No Arabic abstract
This letter reports new results from the MINOS experiment based on a two-year exposure to muon neutrinos from the Fermilab NuMI beam. Our data are consistent with quantum mechanical oscillations of neutrino flavor with mass splitting $|Delta m^2|=(2.43pm 0.13)times10^{-3}$ eV$^2$ (68% confidence level) and mixing angle $sin^2(2theta)>0.90$ (90% confidence level). Our data disfavor two alternative explanations for the disappearance of neutrinos in flight, namely neutrino decays into lighter particles and quantum decoherence of neutrinos, at the 3.7 and 5.7 standard deviation levels, respectively.
This letter reports results from the MINOS experiment based on its initial exposure to neutrinos from the Fermilab NuMI beam. The rate and energy spectra of charged current muon neutrino interactions are compared in two detectors located along the beam axis at distances of 1 km and 735 km. With 1.27 x 10^{20} 120 GeV protons incident on the NuMI target, 215 events with energies below 30 GeV are observed at the Far Detector, compared to an expectation of 336 pm 14.4 events. The data are consistent with muon neutrino disappearance via oscillation with |Delta m^2_{23}| = 2.74^{+0.44}_{-0.26} x 10^{-3} eV^2/c^4 and sin^2(2theta_{23}) > 0.87 (at 60% C.L.).
The MINOS experiment ran from 2003 until 2012 and collected a data sample including 10.71x10^20 protons-on-target (POT) of beam neutrinos, 3.36x10^20 POT of beam antineutrinos and an atmospheric neutrino exposure of 37.88 kt-yrs. The final measurement of the atmospheric neutrino oscillation parameters, dm^2_32 and theta_23, came from a full three flavour oscillation analysis of the combined CC nu_mu and CC anti-nu_mu beam and atmospheric samples and the CC nu_e and CC anti-nu_e appearance samples. This analysis yielded the most precise measurement of the atmospheric mass splitting dm^2_32 performed to date. The results are |dm^2_32|=[2.28 - 2.46]x10^-3 eV^2 (68%) and sin^{2}theta_23=0.35-0.65$ (90%) in the normal hierarchy, and |dm^2_32|=[2.32 - 2.53]x10^-3 eV^2 (68%) and sin^{2}theta_23=0.34-0.67 (90%) in the inverted hierarchy. The successor to MINOS in the NOvA era at FNAL, MINOS+, is now collecting data mostly in the 3-10 GeV region, and an analysis of nu_mu disappearance using the first 2.99x10^20 POT of data produced results very consistent with those from MINOS. Future data will further test the standard neutrino oscillation paradigm and allow for improved searches for exotic phenomena including sterile neutrinos, large extra dimensions and non-standard interactions.
We report measurements of oscillation parameters from $ u_{mu}$ and $bar{ u}_{mu}$ disappearance using beam and atmospheric data from MINOS. The data comprise exposures of unit[$10.71 times 10^{20}$]{protons on target (POT)} in the $ u_{mu}$-dominated beam, $unit[3.36times10^{20}]{POT}}$ in the $bar{ u}_{mu}$-enhanced beam, and 37.88 kton-years of atmospheric neutrinos. Assuming identical $ u$ and $bar{ u}$ oscillation parameters, we measure mbox{$|Delta m^2}| = unit[2.41^{+0.09}_{-0.10}) times 10^{-3}]{eV^{2}}$} and $sin^{2}/!/left(2theta right) = 0.950^{+0.035}_{-0.036}$. Allowing independent $ u$ and $bar{ u}$ oscillations, we measure antineutrino parameters of $|Delta bar{m}^2| = unit[(2.50 ^{+0.23}_{-0.25}) times 10^{-3}]{eV^{2}}$ and $sin^{2}/!/left(2bar{theta} right) = 0.97^{+0.03}_{-0.08}$, with minimal change to the neutrino parameters.
Knowledge of the neutrino flux produced by the Neutrinos at the Main Injector (NuMI) beamline is essential to the neutrino oscillation and neutrino interaction measurements of the MINERvA, MINOS+, NOvA and MicroBooNE experiments at Fermi National Accelerator Laboratory. We have produced a flux prediction which uses all available and relevant hadron production data, incorporating measurements of particle production off of thin targets as well as measurements of particle yields from a spare NuMI target exposed to a 120 GeV proton beam. The result is the most precise flux prediction achieved for a neutrino beam in the one to tens of GeV energy region. We have also compared the prediction to in situ measurements of the neutrino flux and find good agreement.
This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.