Ricci Flow and Nonlinear Reaction--Diffusion Systems in Biology, Chemistry, and Physics


Abstract in English

This paper proposes the Ricci-flow equation from Riemannian geometry as a general geometric framework for various nonlinear reaction-diffusion systems (and related dissipative solitons) in mathematical biology. More precisely, we propose a conjecture that any kind of reaction-diffusion processes in biology, chemistry and physics can be modelled by the combined geometric-diffusion system. In order to demonstrate the validity of this hypothesis, we review a number of popular nonlinear reaction-diffusion systems and try to show that they can all be subsumed by the presented geometric framework of the Ricci flow. Keywords: geometrical Ricci flow, nonlinear reaction-diffusion, dissipative solitons and breathers

Download