Doping Dependence of Superconductivity and Lattice Constants in Hole Doped $La_{1-x}Sr_xFeAsO$


Abstract in English

By using solid state reaction method we have fabricated the hole doped $La_{1-x}Sr_xFeAsO$ superconductors with Sr content up to 0.13. It is found that the sharp anomaly at about 150 K and the low temperature upturn of resistivity are suppressed by doping holes into the parent phase. Interestingly both the superconducting transition temperature $T_c$ and the lattice constants (a-axis and c-axis) increase monotonously with hole concentration, in sharp contrast with the electron doped side where the $T_c$ increases with a continuing shrinkage of the lattice constants either by dope more fluorine or oxygen vacancies into the system. Our data clearly illustrate that the superconductivity can be induced by doping holes via substituting the trivalent La with divalent Sr in the LaFeAsO system with single FeAs layer, and the $T_c$ in the present system exhibits a symmetric behavior at the electron and hole doped sides, as we reported previously.

Download