Scaling law for topologically ordered systems at finite temperature


Abstract in English

Understanding the behaviour of topologically ordered lattice systems at finite temperature is a way of assessing their potential as fault-tolerant quantum memories. We compute the natural extension of the topological entanglement entropy for T > 0, namely the subleading correction $I_{textrm{topo}}$ to the area law for mutual information. Its dependence on T can be written, for Abelian Kitaev models, in terms of information-theoretic functions and readily identifiable scaling behaviour, from which the interplay between volume, temperature, and topological order, can be read. These arguments are extended to non-Abelian quantum double models, and numerical results are given for the $D(S_3)$ model, showing qualitative agreement with the Abelian case.

Download