No Arabic abstract
Higgs boson decays in flexible brane world models with stable, massive gravi-vectors are considered. Such vectors couple bilinearly to the Standard Model fields through either the Standard Model energy-momentum tensor, the weak hypercharge field strength or the Higgs scalar. The role of the coupling involving the extrinsic curvature is highlighted. It is found that within the presently allowed parameter space, the decay rate of the Higgs into two gravi-vectors (which would appear as an invisible Higgs decay) can be comparable to the rate for any of the Standard Model decay modes.
Neutrinos may acquire small Dirac or Majorana masses by new low-energy physics in terms of the chiral gravitational anomaly, as proposed by Dvali and Funcke (2016). This model predicts fast neutrino decays, $ u_ito u_j+phi$ and $ u_itobar{ u}_j+phi$, where the gravi-majorons $phi$ are pseudoscalar Nambu-Goldstone bosons. The final-state neutrino and antineutrino distributions differ depending on the Dirac or Majorana mass of the initial state. This opens a channel for distinguishing these cases, for example in the spectrum of high-energy astrophysical neutrinos. In particular, we put bounds on the neutrino lifetimes in the Majorana case, ${tau_2}/{m_2}> 1.1times 10^{-3}(6.7times 10^{-4})~{rm s/eV}$ and ${tau_3}/{m_3}> 2.2times 10^{-5}(1.3times 10^{-4})~{rm s/eV}$ at 90% CL for hierarchical (degenerate) masses, using data from experiments searching for antineutrino appearance from the Sun.
The class of higher-dimensional scenarios, based on a brane-localised Higgs boson coupled to bulk fermions, can address both the flavour puzzle and gauge hierarchy problem. A key question arises due to the possibility of fermion profile discontinuities at the Higgs boundary: how to calculate rigorously the fermion mass spectrum and effective four-dimensional (4D) Yukawa couplings? We show that the proper treatment, leading to physically consistent solutions, does not rely on any Higgs peak regularisation but requires the presence of certain Bilinear Brane Terms (BBT). In particular, no profile jump should appear and the Higgs regularisations turn out to suffer from mathematical discrepancies reflected in two non-commutativities of calculation steps debated in the literature. The introduction of BBT can by replaced by vanishing conditions for probability currents at the considered flat interval boundaries. Both contribute to the definition of the field geometrical configuration of the model, even in the free case. The BBT could allow to elaborate an ultra-violet origin of the chiral nature of the Standard Model and of its chirality distribution among quarks/leptons. The current conditions are implemented via essential boundary conditions to be contrasted with the natural boundary conditions derived from the action variation. All these theoretical conclusions are confirmed in particular by the converging exact results of the 4D versus 5D approaches. The analysis is completed by a description of the appropriate energy cut-off procedure. The new calculation methods presented, implying the independence of excited fermion masses and 4D Yukawa couplings on the wrong-chirality Yukawa terms, have impacts on phenomenological results like the relaxing of previously obtained strong bounds on Kaluza-Klein masses induced by flavour changing reactions generated through exchanges of the Higgs field.
We recompute the invisible Higgs decay width arising from Higgs-graviscalar mixing in the ADD model, comparing the original derivation in the non-diagonal mass basis to that in a diagonal mass basis. The results obtained are identical (and differ by a factor of 2 from the original calculation) but the diagonal-basis derivation is pedagogically useful for clarifying the physics of the invisible width from mixing. We emphasize that both derivations make it clear that a direct scan in energy for a process such as $WWto WW$ mediated by Higgs plus graviscalar intermediate resonances would follow a {it single} Breit-Wigner form with total width given by $Gamma^{tot}=Gamma_h^{SM}+Gamma_{invisible}$. We also compute the additional contributions to the invisible width due to direct Higgs to graviscalar pair decays. We find that the invisible width due to the latter is relatively small unless the Higgs mass is comparable to or larger than the effective extra-dimensional Planck mass.
We analyze the extent to which the LHC and Tevatron results as of the end of 2012 constrain invisible (or undetected) decays of the Higgs boson-like state at ~ 125 GeV. To this end we perform global fits for several cases: 1) a Higgs boson with Standard Model (SM) couplings but additional invisible decay modes; 2) SM couplings to fermions and vector bosons, but allowing for additional new particles modifying the effective Higgs couplings to gluons and photons; 3) no new particles in the loops but tree-level Higgs couplings to the up-quarks, down-quarks and vector bosons, relative to the SM, treated as free parameters. We find that in the three cases invisible decay rates of 23%, 61%, 88%, respectively, are consistent with current data at 95% confidence level (CL). Limiting the coupling to vector bosons, CV, to CV < 1 in case 3) reduces the allowed invisible branching ratio to 56% at 95% CL. Requiring in addition that the Higgs couplings to quarks have the same sign as in the SM, an invisible rate of up to 36% is allowed at 95% CL. We also discuss direct probes of invisible Higgs decays, as well as the interplay with dark matter searches.
The left-right twin Higgs model predicts one neutral Higgs boson $phi_{0}$ and it acquires mass $m_{phi_{0}}sim mu_{r}$ with the $mu$ term, which can be lighter than half the SM-like Higgs boson mass in a portion of parameter space. Thus, the SM-like Higgs boson $h$ can dominantly decay into a pair of light neutral Higgs bosons especially when $m_{h}$ is below the $WW$ threshold. First, we examine the branching ratios of the SM-like Higgs boson decays and find that the new decay mode $hrightarrow phi_{0}phi_{0}$ is dominant for the case of $m_{h}>2m_{phi_{0}}$. Then we study the production via gluon fusion followed by the decay into two photons or two weak gauge bosons and found that the production rate can be significantly suppressed for some part of parameter space. Finally, we comparatively study the process $gammagammarightarrow h rightarrow bbar{b}$ at ILC in the cases of $m_{h}>2m_{phi_{0}}$ and $m_{h}<2m_{phi_{0}}$, respectively. We find that these predictions can significantly deviated from the SM predictions, e.g., the gluon-gluon fusion channel, in the cases of $m_{h}>2m_{phi_{0}}$ and $m_{h}<2m_{phi_{0}}$, can be suppressed by about 80% and 45%, respectively. Therefor, it is possible to probe the left-right twin Higgs model via these Higgs boson production processes at the LHC experiment or in the future ILC experiment.