Do you want to publish a course? Click here

High pressure synthesis of late rare earth RFeAs(O,F) superconductors; R = Tb and Dy

124   0   0.0 ( 0 )
 Added by John Paul Attfield
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

New TbFeAs(O,F) and DyFeAs(O,F) superconductors with critical temperatures Tc= 46 and 45 K and very high critical fields over 100 T have been prepared at 1100- 1150C and 10-12 GPa, demonstrating that high pressure may be used to synthesise late rare earth derivatives of the recently reported RFeAs(O,F) (R = La - Nd, Sm, Gd) high temperature superconductors.



rate research

Read More

124 - Jie Yang , Xiao-Li Shen , Wei Lu 2008
New iron-arsenide superconductors of REFeAsO1-delta (RE = Ho, Y, Dy and Tb) were successfully synthesized by a high pressure synthesizing method with a special rapid quenching process, with the onset superconducting critical temperatures at 50.3 K, 46.5 K, 52.2K and 48.5 K for RE = Ho, Y, Dy and Tb respectively.
We report a Raman scattering study of six rare earth orthoferrites RFeO3, with R = La, Sm, Eu, Gd, Tb, Dy. The use of extensive polarized Raman scattering of SmFeO3 and first-principles calculations enable the assignment of the observed phonon modes to vibrational symmetries and atomic displacements. The assignment of the spectra and their comparison throughout the whole series allows correlating the phonon modes with the orthorhombic structural distortions of RFeO3 perovskites. In particular, the positions of two specific Ag modes scale linearly with the two FeO6 octahedra tilt angles, allowing the distortion throughout the series. At variance with literature, we find that the two octahedra tilt angles scale differently with the vibration frequencies of their respective Ag modes. This behavior as well as the general relations between the tilt angles, the frequencies of the associated modes and the ionic radii are rationalized in a simple Landau model. The reported Raman spectra and associated phonon-mode assignment provide reference data for structural investigations of the whole series of orthoferrites.
Measurements of ferroelectric polarization and dielectric constant were done on $R$Mn$_2$O$_5$ ($R$=Tb, Dy, and Ho) with applied hydrostatic pressures of up to 18 kbar. At ambient pressure, distinctive anomalies were observed in the temperature profile of both physical properties at critical temperatures marking the onset of long range AFM order (T$_{N1}$), ferroelectricity (T$_{C1}$) as well as at temperatures when anomalous changes in the polarization, dielectric constant and spin wave commensurability have been previously reported. In particular, the step in the dielectric constant at low temperatures (T$_{C2}$), associated with both a drop in the ferroelectric polarization and an incommensurate magnetic structure, was shown to be suddenly quenched upon passing an $R$-dependent critical pressure. This was shown to correlate with the stabilization of the high ferroelectric polarization state which is coincident with the commensurate magnetic structure. The observation is suggested to be due to a pressure induced phase transition into a commensurate magnetic structure as exemplified by the pressure-temperature ($p$-$T$) phase diagrams constructed in this work. The $p$-$T$ phase diagrams are determined for all three compounds.
We report the electrical resistivity measurements under pressure for the recently discovered BiS2-based layered superconductors Bi4O4S3 and La(O,F)BiS2. In Bi4O4S3, the transition temperature Tc decreases monotonically without a distinct change in the metallic behavior in the normal state. In La(O,F)BiS2, on the other hand, Tc initially increases with increasing pressure and then decreases above ? 1 GPa. The semiconducting behavior in the normal state is suppressed markedly and monotonically, whereas the evolution of Tc is nonlinear. The strong suppression of the semiconducting behavior without doping in La(O,F)BiS2 suggests that the Fermi surface is located in the vicinity of some instability. In the present study, we elucidate that the superconductivity in the BiS2 layer favors the Fermi surface at the boundary between the semiconducting and metallic behaviors.
We have synthesized four iron-based oxyarsenide superconductors Rb$Ln_2$Fe$_4$As$_4$O$_2$ ($Ln$ = Sm, Tb, Dy and Ho) resulting from the intergrowth of RbFe$_2$As$_2$ and $Ln$FeAsO. It is found that the lattice match between RbFe$_2$As$_2$ and $Ln$FeAsO is crucial for the phase formation. The structural intergrowth leads to double asymmetric Fe$_2$As$_2$ layers that are separated by insulating $Ln_2$O$_2$ slabs. Consequently, the materials are intrinsically doped at a level of 0.25 holes/Fe-atom and, bulk superconductivity emerges at $T_mathrm{c}$ = 35.8, 34.7, 34.3 and 33.8 K, respectively, for $Ln$ = Sm, Tb, Dy and Ho. Investigation on the correlation between crystal structure and $T_mathrm{c}$ suggests that interlayer couplings may play an additional role for optimization of superconductivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا