No Arabic abstract
We have used the IRAM Plateau de Bure mm interferometer and the UKIRT 1-5 um Imager Spectrometer to test the connection between the major phases of spheroid growth and nuclear accretion by mapping CO emission in nine submm-detected QSOs at z=1.7-2.6 with black hole (BH) masses derived from near-infrared spectroscopy. With a previously published QSO, we present sensitive CO(3-2) observations of 10 submm-detected QSOs selected at the epoch of peak activity in both QSOs and submm galaxies (SMGs). CO is detected in 5/6 very optically luminous (M_B~-28) submm-detected QSOs with BH masses M_BH~10^9-10^10 Msun, confirming the presence of large gas reservoirs of M_gas~3.4x10^10 Msun. However, we find that their BH masses are ~30 times too large and their surface density is ~300 times too small to be related to typical SMGs in an evolutionary sequence. Conversely, we measure weaker CO emission in four fainter (M_B~-25) submm-detected QSOs with properties, BH masses (M_BH~5x10^8 Msun), and surface densities similar to SMGs. These QSOs appear to lie near the local M_BH/M_sph relation, making them plausible `transition objects in the proposed evolutionary sequence linking QSOs to the formation of massive young galaxies and BHs at high-redshift. We show that SMGs have a higher incidence of bimodal CO line profiles than seen in our QSO sample, which we interpret as an effect of their relative inclinations, with the QSOs seen more face-on. Finally, we find that the gas masses of the four fainter submm-detected QSOs imply that their star formation episodes could be sustained for ~10 Myr, and are consistent with representing a phase in the formation of massive galaxies which overlaps a preceding SMG starburst phase, before subsequently evolving into a population of present-day massive ellipticals. [abridged]
In a popular scenario for the coevolution of massive black holes and galaxies, major mergers of gas-rich galaxies fuel vigorous star formation and obscured (type 2) quasar activity until energy feedback from the active galactic nucleus clears away the gas and dust to reveal an unobscured (type 1) quasar. Under this scenario, the precursor type 2 quasars should be more gas-rich than their type 1 counterparts, and both types of quasars are expected to be gas-deficient relative to normal, star-forming galaxies of similar stellar mass. We test this evolutionary hypothesis by investigating the infrared (~ 1-500 micron) spectral energy distribution of 86 optically selected z < 0.5 type 2 quasars, matched in redshift and [O III] luminosity to a comparison sample of type 1 quasars. Contrary to expectations, the gas content of the host galaxies of type 2 quasars is nearly indistinguishable from that of type 1 quasar hosts, and neither type exhibits the predicted deficit in gas relative to normal galaxies. The gas mass fraction of quasar hosts appears unaffected by the bolometric luminosity of the active nucleus, although their interstellar radiation field is preferentially higher than that of normal galaxies, potentially implicating active galactic nucleus heating of the large-scale galactic dust.
We report on submillimetre observations of three high redshift (z>6) quasars, made using the SCUBA camera on the JCMT. Only one of the sample was detected at 850um-- SDSS J1148+5251 (z=6.43). It was also detected (>3 sigma significance) at 450um, one of the few z>4 quasars for which this is the case. In combination with existing millimetric data, the submm detections allow us to place limits on the temperature of the submm-emitting dust, hence on the mass of dust to be synthesized under the time constraint imposed by the quasars redshift.
We present IRAM Plateau de Bure Interferometer observations of the 12CO(3-2) emission from two far-infrared luminous QSOs at z ~ 2.5 selected from the Herschel-ATLAS survey. These far-infrared bright QSOs were selected to have supermassive black holes (SMBHs) with masses similar to those thought to reside in sub-millimetre galaxies (SMGs) at z ~ 2.5; making them ideal candidates as systems in transition from an ultraluminous infrared galaxy phase to a sub-mm faint, unobscured, QSO. We detect 12CO(3-2) emission from both QSOs and we compare their baryonic, dynamical and SMBH masses to those of SMGs at the same epoch. We find that these far-infrared bright QSOs have similar dynamical but lower gas masses than SMGs. In particular we find that far-infrared bright QSOs have ~50+-23% less warm/dense gas than SMGs, which combined with previous results showing the QSOs lack the extended, cool reservoir of gas seen in SMGs, suggests that they are at a different evolutionary stage. This is consistent with the hypothesis that far-infrared bright QSOs represent a short (~1Myr) but ubiquitous phase in the transformation of dust obscured, gas-rich, starburst-dominated SMGs into unobscured, gas-poor, QSOs.
We have assembled a sample of 5 X-ray and submm-luminous z~2 QSOs which are therefore both growing their central black holes through accretion and forming stars copiously at a critical epoch. Hence, they are good laboratories to investigate the co-evolution of star formation and AGN. We have performed a preliminary analysis of the AGN and SF contributions to their UV-to-FIR SEDs, fitting them with simple direct (disk), reprocessed (torus) and star formation components. All three are required by the data and hence we confirm that these objects are undergoing strong star formation in their host galaxies at rates 500-2000 Msun/y. Estimates of their covering factors are between about 30 and 90%. In the future, we will assess the dependence of these results on the particular models used for the components and relate their observed properties to the intrinsice of the central engine and the SF material, as well as their relevance for AGN-galaxy coevolution.
Spectroscopic studies of low-luminosity early-type galaxies are essential to understand their origin and evolution but remain challenging because of low surface brightness levels. We describe an observational campaign with the new high-throughput Binospec spectrograph at the 6.5-m MMT. It targets a representative sample of dwarf elliptical (dE), ultra-diffuse (UDG), and dwarf spheroidal (dSph) galaxies. We outline our data analysis approach that features (i) a full spectrophotometric fitting to derive internal kinematics and star formation histories of galaxies; (ii) two-dimensional light profile decomposition; (iii) Jeans anisotropic modelling to assess their internal dynamics and dark matter content. We present first results for 9 UDGs in the Coma cluster and a nearby dSph galaxy, which suggest that a combination of internal (supernovae feedback) and environmental (ram-pressure stripping, interactions) processes can explain observed properties of UDGs and, therefore, establish an evolutionary link between UDGs, dSph, and dE galaxies.