Local approximation algorithms for a class of 0/1 max-min linear programs


Abstract in English

We study the applicability of distributed, local algorithms to 0/1 max-min LPs where the objective is to maximise ${min_k sum_v c_{kv} x_v}$ subject to ${sum_v a_{iv} x_v le 1}$ for each $i$ and ${x_v ge 0}$ for each $v$. Here $c_{kv} in {0,1}$, $a_{iv} in {0,1}$, and the support sets ${V_i = {v : a_{iv} > 0 }}$ and ${V_k = {v : c_{kv}>0 }}$ have bounded size; in particular, we study the case $|V_k| le 2$. Each agent $v$ is responsible for choosing the value of $x_v$ based on information within its constant-size neighbourhood; the communication network is the hypergraph where the sets $V_k$ and $V_i$ constitute the hyperedges. We present a local approximation algorithm which achieves an approximation ratio arbitrarily close to the theoretical lower bound presented in prior work.

Download