Fun With Fourier Series


Abstract in English

By using computers to do experimental manipulations on Fourier series, we construct additional series with interesting properties. For example, we construct several series whose sums remain unchanged when the nth term is multiplied by sin(n)/n. One series with this property is this classic series for pi/4: pi/4 = 1 - 1/3 + 1/5 ... = 1*(sin(1)/1) - (1/3)*(sin(3)/3) + (1/5)*(sin(5)/5).... Another example is sum (n = 1 to infinity) of (sin(n)/n) = sum (n = 1 to infinity) of (sin(n)/n)^2 = (pi - 1)/2. This material should be accessible to undergraduates. This paper also includes a Mathematica package that makes it easy to calculate and graph the Fourier series of many types of functions.

Download