Do you want to publish a course? Click here

Gromov hyperbolicity of Denjoy domains with hyperbolic and quasihyperbolic metrics

201   0   0.0 ( 0 )
 Added by Jose M. Rodriguez
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We obtain explicit and simple conditions which in many cases allow one decide, whether or not a Denjoy domain endowed with the Poincare or quasihyperbolic metric is Gromov hyperbolic. The criteria are based on the Euclidean size of the complement. As a corollary, the main theorem allows to deduce the non-hyperbolicity of any periodic Denjoy domain.



rate research

Read More

255 - Herve Gaussier 2013
We give a necessary complex geometric condition for a bounded smooth convex domain in Cn, endowed with the Kobayashi distance, to be Gromov hyperbolic. More precisely, we prove that if a smooth bounded convex domain contains an analytic disk in its boundary, then the domain is not Gromov hyperbolic for the Kobayashi distance. We also provide examples of bounded smooth convex domains that are not strongly pseudoconvex but are Gromov hyperbolic.
If $X$ is a geodesic metric space and $x_{1},x_{2},x_{3} in X$, a geodesic triangle $T={x_{1},x_{2},x_{3}}$ is the union of the three geodesics $[x_{1}x_{2}]$, $[x_{2}x_{3}]$ and $[x_{3}x_{1}]$ in $X$. The space $X$ is $delta$-hyperbolic in the Gromov sense if any side of $T$ is contained in a $delta$-neighborhood of the union of the two other sides, for every geodesic triangle $T$ in $X$. If $X$ is hyperbolic, we denote by $delta(X)$ the sharp hyperbolicity constant of $X$, i.e. $delta(X) =inf { deltageq 0:{0.3cm}$ X ${0.2cm}$ $text{is} {0.2cm} delta text{-hyperbolic} }.$ To compute the hyperbolicity constant is a very hard problem. Then it is natural to try to bound the hyperbolycity constant in terms of some parameters of the graph. Denote by $mathcal{G}(n,m)$ the set of graphs $G$ with $n$ vertices and $m$ edges, and such that every edge has length $1$. In this work we estimate $A(n,m):=min{delta(G)mid G in mathcal{G}(n,m) }$ and $B(n,m):=max{delta(G)mid G in mathcal{G}(n,m) }$. In particular, we obtain good bounds for $B(n,m)$, and we compute the precise value of $A(n,m)$ for all values of $n$ and $m$. Besides, we apply these results to random graphs.
196 - Zhuang Wang , Haiqing Xu 2021
Let $mathbb{X}$ be a Jordan domain satisfying hyperbolic growth conditions. Assume that $varphi$ is a homeomorphism from the boundary $partial mathbb{X}$ of $mathbb{X}$ onto the unit circle. Denote by $h$ the harmonic diffeomorphic extension of $varphi $ from $mathbb{X}$ onto the unit disk. We establish the optimal Orlicz-Sobolev regularity and weighted Sobolev estimate of $h.$ These generalize the Sobolev regularity of $h$ by Koski-Onninen [21, Theorem 3.1].
In this paper we study the global geometry of the Kobayashi metric on convex sets. We provide new examples of non-Gromov hyperbolic domains in $mathbb{C}^n$ of many kinds: pseudoconvex and non-pseudocon ewline -vex, bounded and unbounded. Our first aim is to prove that if $Omega$ is a bounded weakly linearly convex domain in $mathbb{C}^n,,ngeq 2,$ and $S$ is an affine complex hyperplane intersecting $Omega,$ then the domain $Omegasetminus S$ endowed with the Kobayashi metric is not Gromov hyperbolic (Theorem 1.3). Next we localize this result on Kobayashi hyperbolic convex domains. Namely, we show that Gromov hyperbolicity of every open set of the form $Omegasetminus S,$ where $S$ is relatively closed in $Omega$ and $Omega$ is a convex domain, depends only on that how $S$ looks near the boundary, i.e., whether $S$ near $partialOmega$ (Theorem 1.7). We close the paper with a general remark on Hartogs type domains. The paper extends in an essential way results in [6].
We compare a Gromov hyperbolic metric with the hyperbolic metric in the unit ball or in the upper half space, and prove sharp comparison inequalities between the Gromov hyperbolic metric and some hyperbolic type metrics. We also obtain several sharp distortion inequalities for the Gromov hyperbolic metric under some families of M{o}bius transformations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا