Physical realization and identification of topological excitations in quantum Heisenberg ferromagnet on lattice


Abstract in English

Physical spin configurations corresponding to topological excitations expected to be present in the XY limit of a purely quantum spin 1/2 Heisenberg ferromagnet, are probed on a two dimensional square lattice. Quantum vortices (anti-vortices) are constructed in terms of coherent spin field components as limiting case of meronic (anti-meronic) configurations. The crucial role of the associated Wess-Zumino term is highlighted in our procedure. It is shown that this term can identify a large class of vortices (anti-vortices). In particular the excitations having odd topological charges form this class and also exihibit a self-similar pattern regarding the internal charge distribution. This manifestation of different behaviour of the odd and the even topological sectors is very prominent in the strongly quantum regime but fades away as we go to higher spins. Our formalism is distinctly different from the conventional approach for the construction of quantum vortices (anti-vortices).

Download