Do you want to publish a course? Click here

Connecting Gas Dynamics and Star Formation Histories in Nearby Galaxies: The VLA-ANGST Survey

161   0   0.0 ( 0 )
 Added by Juergen Ott
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In recent years, HST revolutionized the field of star formation in nearby galaxies. Due to its high angular resolution it has now become possible to construct star formation histories of individual stellar populations on scales of a few arcseconds spanning a range of up to ~600 Myr. This method will be applied to the ANGST galaxies, a large HST volume limited survey to map galaxies up to distances of 3.5-4.0 Mpc (excluding the Local Group). The ANGST sample is currently followed--up by high, ~6 resolution VLA observations of neutral, atomic hydrogen (HI) in the context of VLA-ANGST, an approved Large VLA Project. The VLA resolution is well matched to that of the spatially resolved star formation history maps. The combination of ANGST and VLA-ANGST data will provide a new, promising approach to study essential fields of galaxy evolution such as the triggering of star formation, the feedback of massive stars into the interstellar medium, and the structure and dynamics of the interstellar medium.



rate research

Read More

We present the Very Large Array survey of Advanced Camera for Surveys Nearby Galaxy Survey Treasury galaxies (VLA-ANGST). VLA-ANGST is a National Radio Astronomy Observatory Large Program consisting of high spectral (0.6-2.6 km/s) and spatial (~6) resolution observations of neutral, atomic hydrogen (HI) emission toward 35 nearby dwarf galaxies from the ANGST survey. ANGST is a systematic HST survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (Dlesssim4 Mpc). VLA-ANGST provides VLA HI observations of the sub-sample of ANGST galaxies with recent star formation that are observable from the northern hemisphere and that were not observed in the The HI Nearby Galaxy Survey (THINGS). The overarching scientific goal of VLA-ANGST is to investigate fundamental characteristics of the neutral interstellar medium (ISM) of dwarf galaxies. Here we describe the VLA observations, the data reduction, and the final VLA-ANGST data products. We present an atlas of the integrated HI maps, the intensity-weighted velocity fields, the second moment maps as a measure for the velocity dispersion of the HI, individual channel maps, and integrated HI spectra for each VLA-ANGST galaxy. We closely follow the observational setup and data reduction of THINGS to achieve comparable sensitivity and angular resolution. A major difference, however, is the high velocity resolution of the VLA-ANGST observations (0.65 and 1.3km/s for the majority of the galaxies). The VLA-ANGST data products are made publicly available at: https://science.nrao.edu/science/surveys/vla-angst. With available star formation histories from resolved stellar populations and lower resolution ancillary observations from the FIR to the UV, VLA-ANGST will enable detailed studies of the relationship between the ISM and star formation in dwarf galaxies on a ~100 pc scale.
The spatially resolved star formation histories are studied for 32 normal star-forming galaxies drawn from the the Spitzer Extended Disk Galaxy Exploration Science survey. At surface brightness sensitivities fainter than 28 mag arcsec$^{-2}$, the new optical photometry is deep enough to complement archival ultraviolet and infrared imaging and to explore the properties of the emission well beyond the traditional optical extents of these nearby galaxies. Fits to the spectral energy distributions using a delayed star formation history model indicate a subtle but interesting average radial trend for the spiral galaxies: the inner stellar systems decrease in age with increasing radius, consistent with inside-out disk formation, but the trend reverses in the outermost regions with the stellar age nearly as old as the innermost stars. These results suggest an old stellar outer disk population formed through radial migration and/or the cumulative history of minor mergers and accretions of satellite dwarf galaxies. The subset of S0 galaxies studied here show the opposite trend compared to what is inferred for spirals: characteristic stellar ages that are increasingly older with radius for the inner portions of the galaxies, and increasingly younger stellar ages for the outer portions. This result suggests that either S0 galaxies are not well modeled by a delayed-$tau$ model, and/or that S0 galaxies have a more complicated formation history than spiral galaxies.
In order to quantify the relationship between gas accretion and star formation, we analyse a sample of 29 nearby galaxies from the WHISP survey which contains galaxies with and without evidence for recent gas accretion. We compare combined radial profiles of FUV (GALEX) and IR 24 {mu}m (Spitzer) characterizing distributions of recent star formation with radial profiles of CO (IRAM, BIMA, or CARMA) and HI (WSRT) tracing molecular and atomic gas contents to examine star formation efficiencies in symmetric (quiescent), asymmetric (accreting), and interacting (tidally disturbed) galaxies. In addition, we investigate the relationship between star formation rate and HI in the outer discs for the three groups of galaxies. We confirm the general relationship between gas surface density and star formation surface density, but do not find a significant difference between the three groups of galaxies.
The majority of spiral and elliptical galaxies in the Universe host very dense and compact stellar systems at their centres known as nuclear star clusters (NSCs). In this work we study the stellar populations and star formation histories (SFH) of the NSCs of six nearby galaxies with stellar masses ranging between $2$ and $8times10^9~{rm M_{odot}}$ (four late-type spirals and two early-types) with high resolution spectroscopy. Our observations are taken with the X-Shooter spectrograph at the VLT. We make use of an empirical simple stellar population (SSP) model grid to fit composite stellar populations to the data and recover the SFHs of the nuclei. We find that the nuclei of all late-type galaxies experienced a prolonged SFH, while the NSCs of the two early-types are consistent with SSPs. The NSCs in the late-type galaxies sample appear to have formed a significant fraction of their stellar mass already more than $10$ Gyr ago, while the NSCs in the two early-type galaxies are surprisingly younger. Stars younger than $100$ Myr are present in at least two nuclei: NGC 247 and NGC 7793, with some evidence for young star formation in NGC 300s NSC. The NSCs of the spirals NGC 247 and NGC 300 are consistent with prolonged in situ star formation with a gradual metallicity enrichment from $sim-1.5$ dex more than $10$ Gyr ago, reaching super-Solar values few hundred Myr ago. NGC 3621 appears to be very metal rich already in the early Universe and NGC 7793 presents us with a very complex SFH, likely dominated by merging of various massive star clusters coming from different environments.
Galaxy evolution is generally affected by tidal interactions. Firstly, in this series, we reported several effects which suggest that tidal interactions contribute to regulating star formation (SF). To confirm that so, we now compare stellar mass assembly histories and SF look-back time annular profiles between CALIFA survey tidally and non-tidally perturbed galaxies. We pair their respective star-forming regions at the closest stellar mass surface densities to reduce the influence of stellar mass. The assembly histories and annular profiles show statistically significant differences so that higher star formation rates characterize regions in tidally perturbed galaxies. These regions underwent a more intense (re)activation of SF in the last 1 Gyr. Varying shapes of the annular profiles also reflect fluctuations between suppression and (re)activation of SF. Since gas-phase abundances use to be lower in more actively than in less actively star-forming galaxies, we further explore the plausible presence of metal-poor gas inflows able to dilute such abundances. The resolved relations of oxygen (O) abundance, with stellar mass density and with total gas fraction, show slightly lower O abundances for regions in tidally perturbed galaxies. The single distributions of O abundances statistically validate that so. Moreover, from a metallicity model based on stellar feedback, the mass rate differentials (inflows$-$outflows) show statistically valid higher values for regions in tidally perturbed galaxies. These differentials, and the metal fractions from the population synthesis, suggest dominant gas inflows in these galaxies. This dominance, and the differences in SF through time, confirm the previously reported effects of tidal interactions on SF.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا