Recent experiments by Larson et al. demonstrate the feasibility of measuring local $dd$ excitations using nonresonant inelastic X-ray scattering (IXS). We establish a general framework for the interpretation where the $dd$ transitions created in the scattering process are expressed in effective one-particle operators that follow a simple selection rule. The different operators can be selectively probed by employing their different dependence on the direction and magnitude of the transferred momentum. We use the operators to explain the presence of nodal directions and the nonresonant IXS in specific directions and planes. We demonstrate how nonresonant IXS can be used to extract valuable ground state information for orbiton excitations in manganite.
Nonresonant inelastic x-ray scattering (NIXS) has been performed on single crystals of UO$_2$ to study the direction dependence of higher-order-multipole scattering from the uranium $O_{4,5}$ edges (90--110 eV). By comparing the experimental results with theoretical calculations the symmetry of the ground state is confirmed directly as the crystal-field (CF) $Gamma_5$ triplet state within the $J$ = 4 manifold. The results also demonstrate that the directional dichroism of the NIXS spectra is sensitive to the CF strength and establish NIXS as a tool for probing CF interactions quantitatively.
We report new measurements and calculations of the non-resonant inelastic x-ray scattering (NRIXS) from Mg and Al for a wide range of momentum transfers, q. Extended oscillations in the dynamic structure factor S(q,w) due to scattering from the 2p and 2s orbitals (i.e. L-edges) are observed out to more than 150 eV past the binding energy. These results are discussed in context of the recently proposed representation of S(q,w) for core shells as an atomic background modulated by interference between different photoelectron scattering paths, in analogy to the standard treatment of extended x-ray absorption fine structure. In agreement with this representation, we find a strong increase in the atomic background with increasing q with a concomitant enhancement in the amplitude of the extended fine structure. This effect should be generic and hence may enable improved measurement of the extended fine structure in a wide range of materials containing low-Z elements.
Non-resonant inelastic x ray scattering (NIXS) experiments have been performed to probe the 5d-5f electronic transitions at the uranium O(4,5) absorption edges in uranium dioxide. For small values of the scattering vector q, the spectra are dominated by dipole-allowed transitions encapsulated within the giant resonance, whereas for higher values of q the multipolar transitions of rank 3 and 5 give rise to strong and well-defined multiplet structure in the pre-edge region. The origin of the observed non-dipole multiplet structures is explained on the basis of many-electron atomic spectral calculations. The results obtained demonstrate the high potential of NIXS as a bulk-sensitive technique for the characterization of the electronic properties of actinide materials.
The ladder compound Sr$_{14}$Cu$_{24}$O$_{41}$ is of interest both as a quasi-one-dimensional analog of the superconducting cuprates and as a superconductor in its own right when Sr is substituted by Ca. In order to model resonant inelastic x-ray scattering (RIXS) spectra for this compound, we investigate the simpler SrCu$_{2}$O$_{3}$ system in which the crystal structure contains very similar ladder planes. We approximate the LDA dispersion of SrCu$_{2}$O$_{3}$ by a Cu only two-band tight-binding model. Strong correlation effects are incorporated by assuming an anti-ferromagnetic ground state. The available angle-resolved photoemission (ARPES) and RIXS data on the ladder compound are found to be in reasonable accord with our theoretical predictions.
We develop a formalism to study the Resonant Inelastic X-ray Scattering (RIXS) response in metals based on the diagrammatic expansion for its cross section. The standard approach to the solution of the RIXS problem relies on two key approximations: short-range potentials and non-interacting conduction electrons. However, these approximations are inaccurate for charged particles in metals, where the long-range Coulomb interaction and dynamic screening effects are very important. In this work we study how to extract important information about collective excitations in the Coulomb plasma, plasmons and electron-hole pairs, from RIXS data. We find that single- and multi-plasmon excitations can easily be distinguished by positions of the corresponding peaks, singularities, and their intensities. We also discuss the hybrid processes, where plasmon emission is accompanied by excitation of electron-hole pairs, and study how they manifest themselves.
Michel van Veenendaal
,M. W. Haverkort
.
(2008)
.
"Effective Operator for $dd$ Transitions in Nonresonant Inelastic X-ray Scattering"
.
Maurits Haverkort
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا