Do you want to publish a course? Click here

Discovery of a peculiar Cepheid-like star towards the northern edge of the Small Magellanic Cloud

326   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

For seven years, the EROS-2 project obtained a mass of photometric data on variable stars. We present a peculiar Cepheid-like star, in the direction of the Small Magellanic Cloud, which demonstrates unusual photometric behaviour over a short time interval. We report on data of the photometry acquired by the MARLY telescope and spectroscopy from the EFOSC instrument for this star, called EROS2 J005135-714459(sm0060n13842), which resembles the unusual Cepheid HR 7308. The light curve of our target is analysed using the Analysis of Variance method to determine a pulsational period of 5.5675 days. A fit of time-dependent Fourier coefficients is performed and a search for proper motion is conducted. The light curve exhibits a previously unobserved and spectacular change in both mean magnitude and amplitude, which has no clear theoretical explanation. Our analysis of the spectrum implies a radial velocity of 104 km s$^{-1}$ and a metallicity of -0.4$pm$0.2 dex. In the direction of right ascension, we measure a proper motion of 17.4$pm$6.0 mas yr$^{-1}$ using EROS astrometry, which is compatible with data from the NOMAD catalogue. The nature of EROS2 J005135-714459(sm0060n13842) remains unclear. For this star, we may have detected a non-zero proper motion for this star, which would imply that it is a foreground object. Its radial velocity, pulsational characteristics, and photometric data, however, suggest that it is instead a Cepheid-like object located in the SMC. In such a case, it would present a challenge to conventional Cepheid models.



rate research

Read More

We report on a peculiar X-ray binary pulsar IKT1 = RXJ0047.3-7312 observed with XMM-Newton in Oct. 2000. The X-ray spectrum is described by a two-component spectrum. The hard component has a broken power-law with respective photon indices of 0.2 and 1.8, below and above the break energy at 5.8 keV. The soft component can be modeled by a blackbody of kT = 0.6 keV. The X-ray flux shows a gradual decrease and periodic variations of about 4000 s. The averaged flux in 0.7-10.0 keV is 2.9x10^-12 ergs/cm^2/s, which is ~10 times brighter than that in a ROSAT observation in Nov. 1999. In addition to the 4000-s variation, we found coherent pulsations of 263 +/- 1 s. These discoveries strengthen the Be/X-ray binary scenario proposed by the ROSAT and ASCA observations on this source, and confirm that most of the hard sources in the Small Magellanic Cloud are X-ray binary pulsars. A peculiar property of this XBP is that the coherent pulsations are found only in the soft component, and the folded light curve shows a flat top shape with a sharp dip. We discuss the nature of this XBP focusing on the peculiar soft component.
We find that the emission line object OGLEJ005039.05-725751.4, a member of the cluster OGLE-CL SMC 64, exhibits a peculiar light curve pattern repeating with a recurrence time of 141.45 days. The light curve resembles periodic outbursts with a duty cycle of 20%. A second long-cycle of 2500 days is also detected in the photometric dataset. Two X-SHOOTER spectra obtained at minimum and maximum reveal a Be star dominating at minimum light resembling the Classical Be star 48 Lib. The larger H$alpha$ emission, the stronger NaD absorption and the appearance of emission in the infrared Ca II triplet at maximum, might indicate periodic mass transfer in a complex binary system.
Thorne-Zytkow objects (TZOs) are a theoretical class of star in which a compact neutron star is surrounded by a large, diffuse envelope. Supergiant TZOs are predicted to be almost identical in appearance to red supergiants (RSGs). The best features that can be used at present to distinguish TZOs from the general RSG population are the unusually strong heavy-element and Li lines present in their spectra, products of the stars fully convective envelope linking the photosphere with the extraordinarily hot burning region in the vicinity of the neutron star core. Here we present our discovery of a TZO candidate in the Small Magellanic Cloud. It is the first star to display the distinctive chemical profile of anomalous element enhancements thought to be unique to TZOs. The positive detection of a TZO will provide the first direct evidence for a completely new model of stellar interiors, a theoretically predicted fate for massive binary systems, and never-before-seen nucleosynthesis processes that would offer a new channel for Li and heavy-element production in our universe.
We report the first discovery of a gravitational microlensing candidate towards a new population of source stars, the Small Magellanic Cloud (SMC). The candidate events light curve shows no variation for 3 years before an upward excursion lasting $ sim 217$ days that peaks around January 11, 1997 at a magnification of $ sim 2.1$. Microlensing events towards the Large Magellanic Cloud and the Galactic bulge have allowed important conclusions to be reached on the stellar and dark matter content of the Milky Way. The SMC gives a new line-of-sight through the Milky Way, and is expected to prove useful in determining the flattening of the Galactic halo.
67 - Andrew Hill 2005
We present structural parameters for 204 stellar clusters in the Small Magellanic Cloud derived from fitting King and Elson, Fall, & Freeman model profiles to the V-band surface brightness profiles as measured from the Magellanic Clouds Photometric Survey images. Both King and EFF profiles are satisfactory fits to the majority of the profiles although King profiles are generally slightly superior to the softened power-law profiles of Elson, Fall, and Freeman and provide statistically acceptable fits to ~90% of the sample. We find no correlation between the preferred model and cluster age. The only systematic deviation in the surface brightness profiles that we identify is a lack of a central concentration in a subsample of clusters, which we designate as ring clusters. In agreement with previous studies, we find that the clusters in the SMC are significantly more elliptical than those in the Milky Way. However, given the mean age difference and the rapid destruction of these systems, the comparison between SMC and MW should not directly be interpreted as either a difference in the initial cluster properties or their subsequent evolution. We find that cluster ellipticity correlates with cluster mass more strongly than with cluster age. We identify several other correlations (central surface brightness vs. local background density, core radius vs. tidal force, size vs. distance) that can be used to constrain models of cluster evolution in the SMC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا