Do you want to publish a course? Click here

Eigenfunction concentration for polygonal billiards

103   0   0.0 ( 0 )
 Added by Jeremy Marzuola
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

In this note, we extend the results on eigenfunction concentration in billiards as proved by the third author in cite{M1}. There, the methods developed in Burq-Zworski cite{BZ3} to study eigenfunctions for billiards which have rectangular components were applied. Here we take an arbitrary polygonal billiard $B$ and show that eigenfunction mass cannot concentrate away from the vertices; in other words, given any neighbourhood $U$ of the vertices, there is a lower bound $$ int_U |u|^2 geq c int_B |u|^2 $$ for some $c = c(U) > 0$ and any eigenfunction $u$.



rate research

Read More

96 - Hans Christianson 2013
We consider quasimodes on planar domains with a partially rectangular boundary. We prove that for any $epsilon_0>0$, an $O(lambda^{-epsilon_0})$ quasimode must have $L^2$ mass in the wings bounded below by $lambda^{-2-delta}$ for any $delta>0$. The proof uses the authors recent work on 0-Gevrey smooth domains to approximate quasimodes on $C^{1,1}$ domains. There is an improvement for $C^{2,alpha}$ domains.
The dynamics of a beam held on a horizontal frame by springs and bouncing off a step is described by a separable two degrees of freedom Hamiltonian system with impacts that respect, point wise, the separability symmetry. The energy in each degree of freedom is preserved, and the motion along each level set is conjugated, via action angle coordinates, to a geodesic flow on a flat two-dimensional surface in the four dimensional phase space. Yet, for a range of energies, these surfaces are not the simple Liouville-Arnold tori - these are tori of genus two, thus the motion on them is not conjugated to simple rotations. Namely, even though energy is not transferred between the two degrees of freedom, the impact system is quasi-integrable and is not of the Liouville-Arnold type. In fact, for each level set in this range, the motion is conjugated to the well studied and highly non-trivial dynamics of directional motion in L-shaped billiards, where the billiard area and shape as well as the direction of motion vary continuously on iso-energetic level sets. Return maps to Poincare section of the flow are shown to be conjugated, on each level set, to interval exchange maps which are computed, up to quadratures, in the general nonlinear case and explicitly for the case of two linear oscillators bouncing off a step. It is established that for any such oscillator-step system there exist step locations for which some of the level sets exhibit motion which is neither periodic nor ergodic. Changing the impact surface by introducing additional steps, staircases, strips and blocks from which the particle is reflected, leads to iso-energy surfaces that are foliated by families of genus-k level set surfaces, where the number and order of families of genus k depend on the energy.
We prove Strichartz estimates with a loss of derivatives for the Schrodinger equation on polygonal domains with either Dirichlet or Neumann homogeneous boundary conditions. Using a standard doubling procedure, estimates the on polygon follow from those on Euclidean surfaces with conical singularities. We develop a Littlewood-Paley squarefunction estimate with respect to the spectrum of the Laplacian on these spaces. This allows us to reduce matters to proving estimates at each frequency scale. The problem can be localized in space provided the time intervals are sufficiently small. Strichartz estimates then follow from a result of the second author regarding the Schrodinger equation on the Euclidean cone.
Using a new local smoothing estimate of the first and third authors, we prove local-in-time Strichartz and smoothing estimates without a loss exterior to a large class of polygonal obstacles with arbitrary boundary conditions and global-in-time Strichartz estimates without a loss exterior to a large class of polygonal obstacles with Dirichlet boundary conditions. In addition, we prove a global-in-time local smoothing estimate in exterior wedge domains with Dirichlet boundary conditions and discuss some nonlinear applications.
We look at the $L^p$ bounds on eigenfunctions for polygonal domains (or more generally Euclidean surfaces with conic singularities) by analysis of the wave operator on the flat Euclidean cone $C(mathbb{S}^1_rho) := mathbb{R}_+ times left(mathbb{R} big/ 2pirho mathbb{Z}right)$ of radius $rho > 0$ equipped with the metric $h(r,theta) = d r^2 + r^2 , dtheta^2$. Using explicit oscillatory integrals and relying on the fundamental solution to the wave equation in geometric regions related to flat wave propagation and diffraction by the cone point, we can prove spectral cluster estimates equivalent to those in works on smooth Riemannian manifolds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا