Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering


Abstract in English

We reduce the dimensionless interaction strength in graphene by adding a water overlayer in ultra-high vacuum, thereby increasing dielectric screening. The mobility limited by long-range impurity scattering is increased over 30 percent, due to the background dielectric constant enhancement leading to reduced interaction of electrons with charged impurities. However, the carrier-density-independent conductivity due to short range impurities is decreased by almost 40 percent, due to reduced screening of the impurity potential by conduction electrons. The minimum conductivity is nearly unchanged, due to canceling contributions from the electron/hole puddle density and long-range impurity mobility. Experimental data are compared with theoretical predictions with excellent agreement.

Download