Pullback Attractors for the Non-autonomous FitzHugh-Nagumo System on Unbounded Domains


Abstract in English

The existence of a pullback attractor is established for the singularly perturbed FitzHugh-Nagumo system defined on the entire space $R^n$ when external terms are unbounded in a phase space. The pullback asymptotic compactness of the system is proved by using uniform a priori estimates for far-field values of solutions. Although the limiting system has no global attractor, we show that the pullback attractors for the perturbed system with bounded external terms are uniformly bounded, and hence do not blow up as a small parameter approaches zero.

Download