Do you want to publish a course? Click here

Quantum behavior of the dc SQUID phase qubit

119   0   0.0 ( 0 )
 Added by Kaushik Mitra
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the behavior of a dc Superconducting Quantum Interference Device (SQUID) phase qubit in which one junction acts as a phase qubit and the rest of the device provides isolation from dissipation and noise in the bias leads. Ignoring dissipation, we find the two-dimensional Hamiltonian of the system and use numerical methods and a cubic approximation to solve Schrodingers equation for the eigenstates, energy levels, tunneling rates, and expectation value of the currents in the junctions. Using these results, we investigate how well this design provides isolation while preserving the characteristics of a phase qubit. In addition, we show that the expectation value of current flowing through the isolation junction depends on the state of the qubit and can be used for non-destructive read out of the qubit state.



rate research

Read More

We report measurements of Rabi oscillations and spectroscopic coherence times in an Al/AlOx/Al and three Nb/AlOx/Nb dc SQUID phase qubits. One junction of the SQUID acts as a phase qubit and the other junction acts as a current-controlled nonlinear isolating inductor, allowing us to change the coupling to the current bias leads in situ by an order of magnitude. We found that for the Al qubit a spectroscopic coherence time T2* varied from 3 to 7 ns and the decay envelope of Rabi oscillations had a time constant T = 25 ns on average at 80 mK. The three Nb devices also showed T2* in the range of 4 to 6 ns, but T was 9 to 15 ns, just about 1/2 the value we found in the Al device. For all the devices, the time constants were roughly independent of the isolation from the bias lines, implying that noise and dissipation from the bias leads were not the principal sources of dephasing and inhomogeneous broadening.
We report spectroscopic measurements of discrete two-level systems (TLSs) coupled to a dc SQUID phase qubit with a 16 mum2 area Al/AlOx/Al junction. Applying microwaves in the 10 GHz to 11 GHz range, we found eight avoided level crossings with splitting sizes from 10 MHz to 200 MHz and spectroscopic lifetimes from 4 ns to 160 ns. Assuming the transitions are from the ground state of the composite system to an excited state of the qubit or an excited state of one of the TLS states, we fit the location and spectral width to get the energy levels, splitting sizes and spectroscopic coherence times of the phase qubit and TLSs. The distribution of splittings is consistent with non-interacting individual charged ions tunneling between random locations in the tunnel barrier and the distribution of lifetimes is consistent with the AlOx in the junction barrier having a frequency-independent loss tangent. To check that the charge of each TLS couples independently to the voltage across the junction, we also measured the spectrum in the 20-22 GHz range and found tilted avoided level crossings due to the second excited state of the junction and states in which both the junction and a TLS were excited.
We have investigated the fidelity and speed of single-shot current-pulse measurements of the three lowest energy states of the dc SQUID phase qubit. We apply a short (2ns) current pulse to one junction of a Nb/AlOx/Nb SQUID that is in the zero voltage state at 25 mK and measure if the system switches to the finite voltage state. By plotting the switching rate versus pulse size we can determine average occupancy of the levels down to 0.01%, quantify small levels of leakage, and find the optimum pulse condition for single-shot measurements. Our best error rate is 3% with a measurement fidelity of 94%. By monitoring the escape rate during the pulse, the pulse current in the junction can be found to better than 10 nA on a 0.1 ns time scale. Theoretical analysis of the system reveals switching curves that are in good agreement with the data, as well as predictions that the ultimate single-shot error rate for this technique can reach 0.4% and the fidelity 99.2%.
We report measurements of spectroscopic linewidth and Rabi oscillations in three thin-film dc SQUID phase qubits. One device had a single-turn Al loop, the second had a 6-turn Nb loop, and the third was a first order gradiometer formed from 6-turn wound and counter-wound Nb coils to provide isolation from spatially uniform flux noise. In the 6 - 7.2 GHz range, the spectroscopic coherence times for the gradiometer varied from 4 ns to 8 ns, about the same as for the other devices (4 to 10 ns). The time constant for decay of Rabi oscillations was significantly longer in the single-turn Al device (20 to 30 ns) than either of the Nb devices (10 to 15 ns). These results imply that spatially uniform flux noise is not the main source of decoherence or inhomogenous broadening in these devices.
170 - Hu Zhao , Tiefu Li , Jianshe Liu 2013
A phase-slip flux qubit, exactly dual to a charge qubit, is composed of a superconducting loop interrupted by a phase-slip junction. Here we propose a tunable phase-slip flux qubit by replacing the phase-slip junction with a charge-related superconducting quantum interference device (SQUID) consisting of two phase-slip junctions connected in series with a superconducting island. This charge-SQUID acts as an effective phase-slip junction controlled by the applied gate voltage and can be used to tune the energy-level splitting of the qubit. Also, we show that a large inductance inserted in the loop can reduce the inductance energy and consequently suppress the dominating flux noise of the phase-slip flux qubit. This enhanced phase-slip flux qubit is exactly dual to a transmon qubit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا