Analog information processing at the quantum limit with a Josephson ring modulator


Abstract in English

Amplifiers are crucial in every experiment carrying out a very sensitive measurement. However, they always degrade the information by adding noise. Quantum mechanics puts a limit on how small this degradation can be. Theoretically, the minimum noise energy added by a phase preserving amplifier to the signal it processes amounts at least to half a photon at the signal frequency. In this article, we show that we can build a practical microwave device that fulfills the minimal requirements to reach the quantum limit. This is of importance for the readout of solid state qubits, and more generally, for the measurement of very weak signals in various areas of science. We also discuss how this device can be the basic building block for a variety of practical applications such as amplification, noiseless frequency conversion, dynamic cooling and production of entangled signal pairs.

Download