Do you want to publish a course? Click here

An $L_infty$ algebra structure on polyvector fields

534   0   0.0 ( 0 )
 Added by Boris Shoikhet
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

It is well-known that the Kontsevich formality [K97] for Hochschild cochains of the polynomial algebra $A=S(V^*)$ fails if the vector space $V$ is infinite-dimensional. In the present paper, we study the corresponding obstructions. We construct an $L_infty$ structure on polyvector fields on $V$ having the even degree Taylor components, with the degree 2 component given by the Schouten-Nijenhuis bracket, but having as well higher non-vanishing Taylor components. We prove that this $L_infty$ algebra is quasi-isomorphic to the corresponding Hochschild cochain complex. We prove that our $L_infty$ algebra is $L_infty$ quasi-isomorphic to the Lie algebra of polyvector fields on $V$ with the Schouten-Nijenhuis bracket, if $V$ is finite-dimensional.



rate research

Read More

165 - Rina Anno 2005
Consider a smooth affine algebraic variety $X$ over an algebraically closed field, and let a finite group $G$ act on it. We assume that the characteristic of the field is greater than the dimension of $X$ and the order of $G$. An explicit formula for multiplication on the Hochschild cohomology of a crossed product of $k[G]$ and $k[X]$ is given in terms of multivector fields on $X$ and $g$-invariant subvarieties of $X$ for $gin G$.
This paper continues the study of the lower central series quotients of an associative algebra A, regarded as a Lie algebra, which was started in math/0610410 by Feigin and Shoikhet. Namely, it provides a basis for the second quotient in the case when A is the free algebra in n generators (note that the Hilbert series of this quotient was determined earlier in math/0610410). Further, it uses this basis to determine the structure of the second quotient in the case when A is the free algebra modulo the relations saying that the generators have given nilpotency orders. Finally, it determines the structure of the third and fourth quotient in the case of 2 generators, confirming an answer conjectured in math/0610410. Finally, in the appendix, the results of math/0610410 are generalized to the case when A is an arbitrary associative algebra (under certain conditions on $A$).
The global formality of Dolgushev depends on the choice of a torsion-free covariant derivative. We prove that the globalized formalities with respect to two different covariant derivatives are homotopic. More explicitly, we derive the statement by proving a more general homotopy equivalence between $L_infty$-morphisms that are twisted with gauge equivalent Maurer-Cartan elements.
We compute the Hochschild-Kostant-Rosenberg decomposition of the Hochschild cohomology of Fano 3-folds. This is the first step in understanding the non-trivial Gerstenhaber algebra structure, and yields some initial insights in the classification of Poisson structures on Fano 3-folds of higher Picard rank.
In this short note we describe an alternative global version of the twisting procedure used by Dolgushev to prove formality theorems. This allows us to describe the maps of Fedosov resolutions, which are key factors of the formality morphisms, in terms of a twist of the fiberwise quasi-isomorphisms induced by the local formality theorems proved by Kontsevich and Shoikhet. The key point consists in considering $L_infty$-resolutions of the Fedosov resolutions obtained by Dolgushev and an adapted notion of Maurer-Cartan element. This allows us to perform the twisting of the quasi-isomorphism intertwining them in a global manner.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا