Collapse of a Gaussian beam in self-focusing Kerr media arrested by nonlinear losses may lead to the spontaneous formation of a quasi-stationary nonlinear unbalanced Bessel beam with finite energy, which can propagate without significant distortion over tens of diffraction lengths, and without peak intensity attenuation while the beam power is drastically diminishing.
A unified description of the free-space cylindrical vector beams is presented, which is an integral transformation solution to the vector Helmholtz equation and the transversality condition. The amplitude 2-form of the angular spectrum involved in this solution can be arbitrarily chosen. When one of the two elements is zero, we arrive at either transverse-electric or transverse-magnetic beam mode. In the paraxial condition, this solution not only includes the known $J_1$ Bessel-Gaussian vector beam and the axisymmetric Laguerre-Gaussian vector beam that were obtained by solving the paraxial wave equations, but also predicts two new kinds of vector beam, called the modified-Bessel-Gaussian vector beam.
We solve the (2+1)D nonlinear Helmholtz equation (NLH) for input beams that collapse in the simpler NLS model. Thereby, we provide the first ever numerical evidence that nonparaxiality and backscattering can arrest the collapse. We also solve the (1+1)D NLH and show that solitons with radius of only half the wavelength can propagate over forty diffraction lengths with no distortions. In both cases we calculate the backscattered field, which has not been done previously. Finally, we compute the dynamics of counter-propagating solitons using the NLH model, which is more comprehensive than the previously used coupled NLS model.
We predict that Bessel-like beams of arbitrary integer order can exhibit a tunable self-similar behavior (that take an invariant form under suitable stretching transformations). Specifically, by engineering the amplitude and the phase on the input plane in real space, we show that it is possible to generate higher-order vortex Bessel-like beams with fully controllable radius of the hollow core and maximum intensity during propagation. In addition, using a similar approach, we show that it is also possible to generate zeroth order Bessel-like beams with controllable beam width and maximum intensity. Our numerical results are in excellent agreement with our theoretical predictions.
Vector beams (VBs) are widely investigated for its special intensity and polarization distributions, which is useful for optical micromanipulation, optical micro-fabrication, optical communication, and single molecule imaging. To date, it is still a challenge to realize nonlinear frequency conversion (NFC) and manipulation of such VBs because of the polarization sensitivity in most of nonlinear processes. Here, we report an experimental realization of NFC and manipulation of VBs which can be used to expand the available frequency band. The main idea of our scheme is to introduce a Sagnac loop to solve the polarization dependence of NFC in nonlinear crystals. Furthermore, we find that a linearly polarized vector beam should be transformed to an exponential form before performing the NFC. The experimental results are well agree with our theoretical model. The present method is also applicable to other wave bands and second order nonlinear processes, and may also be generalized to the quantum regime for single photons.
Adaptive optics (AO) systems rely on the principle of reciprocity, or symmetry with respect to the interchange of point sources and receivers. These systems use the light received from a low power emitter on or near a target to compensate profile aberrations acquired by a laser beam during linear propagation through random media. If, however, the laser beam propagates nonlinearly, reciprocity is broken, potentially undermining AO correction. Here we examine the consequences of this breakdown. While discussed for general random and nonlinear media, we consider specific examples of Kerr-nonlinear, turbulent atmosphere.
Miguel A. Porras
,Alberto Parola
.
(2008)
.
"Nonlinear unbalanced Bessel beams in the collapse of Gaussian beams arrested by nonlinear losses"
.
Miguel A. Porras
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا