Do you want to publish a course? Click here

Controlling Quasibound States in 1D Continuum Through Electromagnetic Induced Transparency Mechanism

154   0   0.0 ( 0 )
 Added by Zhirui Gong
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the coherent scattering process of a single photon confined in an one-dimensional (1D) coupled cavity-array, where a $Lambda$-type three-level atom is placed inside one of the cavities in the array and behaves as a functional quantum node (FQN). We show that, through the electromagnetic induced transparency (EIT) mechanism, the $Lambda$-type FQN bears complete control over the reflection and transmission of the incident photon along the cavity-array. We also demonstrate the emergence of a quasibound state of the single photon inside a secondary cavity constructed by two distant FQNs as two end mirrors, from which we are motivated to design an all-optical single photon storage device of quantum coherence.



rate research

Read More

We determine the optical response of a thin and dense layer of interacting quantum emitters. We show that in such a dense system, the Lorentz redshift and the associated interaction broadening can be used to control the transmission and reflection spectra. In the presence of overlapping resonances, a Dipole-Induced Electromagnetic Transparency (DIET) regime, similar to Electromagnetically Induced Transparency (EIT), may be achieved. DIET relies on destructive interference between the electromagnetic waves emitted by quantum emitters. Carefully tuning material parameters allows to achieve narrow transmission windows in otherwise completely opaque media. We analyze in details this coherent and collective effect using a generalized Lorentz model and show how it can be controlled. Several potential applications of the phenomenon, such as slow light, are proposed.
92 - Deng-Gao Lai , Xin Wang , Wei Qin 2020
We study tunable optomechanically induced transparency by controlling the dark-mode effect induced by two mechanical modes coupled to a common cavity field. This is realized by introducing a phase-dependent phonon-exchange interaction, which is used to form a loop-coupled configuration. Combining this phase-dependent coupling with the optomechanical interactions, the dark-mode effect can be controlled by the quantum interference effect. In particular, the dark-mode effect in this two-mechanical-mode optomechanical system can lead to a double-amplified optomechanically induced transparency (OMIT) window and a higher efficiency of the second-order sideband in comparison with the standard optomechanical system. This is because the effective mechanical decay rate related to the linewidth of the OMIT window becomes a twofold increase in the weak-coupling limit. When the dark-mode effect is broken, controllable double transparency windows appear and the second-order sideband, as well as the light delay or advance, is significantly enhanced. For an N-mechanical-mode optomechanical system, we find that in the presence of the dark-mode effect, the amplification multiple of the linewidth of the OMIT window is nearly proportional to the number of mechanical modes, and that the OMIT with a single window becomes the one with N tunable windows by breaking the dark-mode effect. The study will be useful in optical information storage within a large-frequency bandwidth and multichannel optical communication based on optomechanical systems.
Electromagnetically induced transparency (EIT) has been extensively studied in various systems. However, it is not easy to observe in superconducting quantum circuits (SQCs), because the Rabi frequency of the strong controlling field corresponding to EIT is limited by the decay rates of the SQCs. Here, we show that EIT can be achieved by engineering decay rates in a superconducting circuit QED system through a classical driving field on the qubit. Without such a driving field, the superconducting qubit and the cavity field are approximately decoupled in the large detuning regime, and thus the eigenstates of the system are approximately product states of the cavity field and qubit states. However, the driving field can strongly mix these product states and so-called polariton states can be formed. The weights of the states for the qubit and cavity field in the polariton states can be tuned by the driving field, and thus the decay rates of the polariton states can be changed. We choose a three-level system with $Lambda$-type transitions in such a driven circuit QED system, and demonstrate how EIT and ATS can be realized in this compound system. We believe that this study will be helpful for EIT experiments using SQCs.
128 - O.S. Mishina 2011
Electromagnetically induced transparency (EIT) has mainly been modelled for three-level systems. In particular, a considerable interest has been dedicated to the Lambda-configuration, with two ground states and one excited state. However, in the alkali-metal atoms, which are commonly used, hyperfine interaction in the excited state introduces several levels which simultaneously participate in the scattering process. When the Doppler broadening is comparable with the hyperfine splitting in the upper state, the three-level Lambda model does not reproduce the experimental results. Here we theoretically investigate the EIT in a hot vapor of alkali-metal atoms and demonstrate that it can be strongly reduced due to the presence of multiple excited levels. Given this model, we also show that a well-designed optical pumping enables to significantly recover the transparency.
133 - Junling Long , H. S. Ku , Xian Wu 2017
Electromagnetically induced transparency (EIT) is a signature of quantum interference in an atomic three-level system. By driving the dressed cavity-qubit states of a two-dimensional circuit QED system, we generate a set of polariton states in the nesting regime. The lowest three energy levels are utilized to form the $Lambda$-type system. EIT is observed and verified by Akaikes information criterion based testing. Negative group velocities up to $-0.52pm0.09$ km/s are obtained based on the dispersion relation in the EIT transmission spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا