No Arabic abstract
We present Keck LRIS spectroscopy of the black hole-hosting globular cluster RZ2109 in the Virgo elliptical galaxy NGC 4472. We find that this object has extraordinarily broad [OIII]5007 and [OIII]4959 emission lines, with velocity widths of approximately 2,000 k/ms. This result has significant implications for the nature of this accreting black-hole system and the mass of the globular cluster black hole. We show that the broad [OIII]5007 emission must arise from material driven at high velocity from the black hole system. This is because the volume available near the black hole is too small by many orders of magnitude to have enough [OIII] emitting atoms to account for the observed L([OIII]5007) at high velocities, even if this volume is filled with Oxygen at the critical density for [OIII]5007. The Balmer emission is also weak, indicating the observed [OIII] is not due to shocks. We therefore conclude that the [OIII]4959,5007 is produced by photoionization of material driven across the cluster. The only known way to drive significant material at high velocity is for a system accreting mass near or above its Eddington limit, which indicates a stellar mass black hole. Since it is dynamically implausible to form an accreting stellar mass black hole system in a globular cluster with an intermediate mass black hole (IMBH), it appears this massive globular cluster does not have an IMBH. We discuss further tests of this conclusion, and its implications for the M_BH - M_stellar and M_BH - sigma relations.
We present the discovery of [OIII] 5007 emission associated with the black hole X-ray binary recently identified in a globular cluster in the Virgo elliptical galaxy NGC 4472. This object is the first confirmed black-hole X-ray binary in a globular cluster. The identification of [OIII] 5007 emission from the black-hole hosting globular cluster is based on two independent fiber spectra obtained at the VLT with FLAMES, which cover a wavelength range of 5000-5800 Angstrom at a spectral resolution of about 6000. In each of these spectra we find an emission line at 5031.2 Angstrom with an uncertainty of several tenths of an Angstrom. These are consistent with [OIII] 5007 emission at the 1475 +/- 7 km/s radial velocity of the globular cluster previously determined from an analysis of its absorption lines. This agreement within the small uncertainties argues strongly in favor of the interpretation of the line as [OIII] 5007 emission from the black-hole hosting globular cluster. We also find that the emission line most likely has a velocity width of several hundred km/s. Such a velocity width rules out a planetary nebula explanation for the [OIII] 5007 emission and implicates the black hole as the source of the power driving the nebular emission.
We present the results of a Chandra/HST study of the point sources of the NGC 4472. We identify 144 X-ray sources, 72 with HST matches. The optical data show 1102 sources, 829 with globular cluster colors. Thirty matches are found - likely to be low mass X-ray binaries in globular clusters, while 42 have no optical counterparts to V~25 and I~24 - likely predominantly LMXBs in the field star population. Thus approximately 40% of the X-ray sources are in globular clusters and ~4% of the globular clusters contain X-ray sources. The blue GC sources may have harder X-ray spectra than the red GC sources. No significant differences are found between the X-ray properties of the field sources and of the GC sources. This study, along with our previous result from Paper I in this series on the similarity of the spatial profile of the field LMXBs, globular cluster LMXBs, and the globular clusters themselves suggest that a significant fraction of the observed low mass X-ray binaries in the field may be created in a globular cluster then ejected into the field by stellar interaction s; however, by comparing the results for NGC 4472 with those in several other galaxies, we find tentative evidence for a correlation be tween the globular cluster specific frequency and the fraction of LMXBs in globular clusters, a correlation which would be most easily explained if some of the field sources were generated in situ. We show that isolated accreting very massive black holes are unlikely to be observable with current X-ray instrumentation and that these sources hence do not contaminate the LMXB population. We discuss the possibility that several equatorial point sources may indicate the presence of a disk wind responsible for the low radiative efficiency observed in the nucleus of this source. (abridged)
We present the results of new X-ray observations of XMMU 122939.7+075333, the black hole (BH) in the globular cluster RZ 2109 in the Virgo Cluster galaxy NGC 4472. A combination of non-detections and marginal detections in several recent Swift and Chandra observations show that the source has varied by at least a factor of 20 in the past 6 years, and that the variations seem not just to be flickering. This variation could be explained with changes in the absorption column intrinsic to the source no larger than those which were previously seen near the peak of the 1989 outburst of the Galactic BH X-ray binary V404 Cyg. The large amplitude variations are also a natural expectation from a hierarchical triple system with Kozai cycles -- the mechanism recently proposed to produce BH-white dwarf (WD) binaries in globular clusters. On the other hand, variation by such a large factor on timescales of years, rather than centuries, is very difficult to reconcile with the scenario in which the X-ray emission from XMMU 122939.7+075333 is due to fallback of material from a tidally destroyed or detonated WD.
RZ2109 is the first of several extragalactic globular clusters shown to host an ultraluminous X-ray source. RZ2109 is particularly notable because optical spectroscopy shows it has broad, luminous [OIII] 4959,5007 emission, while also having no detectable hydrogen emission. The X-ray and optical characteristics of the source in RZ2109 make it a good candidate for being a stellar mass black hole accreting from a white dwarf donor (i.e. an ultracompact black hole X-ray binary). In this paper we present optical spectroscopic monitoring of the [OIII]5007 emission line from 2007 to 2018. We find that the flux of the emission line is significantly lower in recent observations from 2016-2018 than it was in earlier observations in 2007-2011. We also explore the behaviour of the emission line shape over time. Both the core and the wings of the emission line decline over time, with some evidence that the core declines more rapidly than the wings. However, the most recent observations (in 2019) unexpectedly show the emission line core re-brightening.
We present a study of the X-ray spectral properties of the highly variable X-ray emitting black hole in a globular cluster in the elliptical galaxy NGC 4472. The XMM-Newton spectrum of the source in its bright epoch is well described by a multiple blackbody model with a characteristic temperature $kT_{in}approx$ 0.2 keV. The spectrum of an archival Chandra observation of the source obtained 3.5 years before the XMM data gives similar estimates for the blackbody parameters. We confirm that the fainter interval of the XMM-Newton observation has a spectrum that is consistent with the brighter epoch, except for an additional level of foreground absorption. We also consider other possible mechanisms for the variability. Based on the timescale of the X-ray flux decline and the estimated size of the X-ray emission region we argue that an eclipsing companion is highly unlikely. We find the most likely means of producing the absorption changes on the observed timescale is through partial obscuration by a precessing warped accretion disk.