Do you want to publish a course? Click here

A search for damped Lyman-alpha systems towards radio-loud quasars I: The optical survey

73   0   0.0 ( 0 )
 Added by Sara L. Ellison
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results from the optical component of a survey for damped Lyman-alpha systems (DLAs) towards radio-loud quasars. Our quasar sample is drawn from the Texas radio survey with the following primary selection criteria: z_em > 2.4, optical magnitudes B < 22 and 365 MHz flux density S_365 > 400 mJy. We obtained spectra for a sample of 45 QSOs with the William Herschel Telescope, Very Large Telescope and Gemini-North, resulting in a survey redshift path Delta z = 38.79. We detect nine DLAs and one sub-DLA with a mean absorption redshift <z> = 2.44. The DLA number density is n(z) = 0.23^{+0.11}_{-0.07}, in good agreement with the value derived for DLAs detected in the Sloan Digital Sky Survey at this redshift. The DLA number density of our sample is also in good agreement with optically-complete radio-selected samples, supporting previous claims that n(z) is not significantly affected by dust obscuration bias. We present N(HI) column density determinations and metal line equivalent width measurements for all our DLAs. The low frequency flux density selection criterion used for the quasar sample implies that all absorbers will be suitable for follow-up absorption spectroscopy in the redshifted HI 21 cm line. A following paper (Kanekar et al.) will present HI 21 cm absorption studies of, and spin temperature determinations for, our DLA sample.



rate research

Read More

54 - S. J. Curran 2002
We have used the SEST 15-metre and Onsala 20-metre telescopes to perform deep (r.m.s. >~ 30 mJy) integrations of various molecular rotational transitions towards damped Lyman-alpha absorption systems (DLAs) known to occult millimetre-loud quasars. We have observed 6 new systems and improved the existing limits for 11 transitions. These limits may be approaching the sensitivities required to detect new systems and we present a small number of candidate systems which we believe warrant further observation.
We image 19 quasars with 22 damped Lyman alpha (DLA) systems using the F160W filter and the Near-Infrared Camera and Multiobject Spectrograph aboard the Hubble Space Telescope, in both direct and coronagraphic modes. We reach 5 sigma detection limits of ~H=22 in the majority of our images. We compare our observations to the observed Lyman-break population of high-redshift galaxies, as well as Bruzual & Charlot evolutionary models of present-day galaxies redshifted to the distances of the absorption systems. We predict H magnitudes for our DLAs, assuming they are producing stars like an L* Lyman-break galaxy (LBG) at their redshift. Comparing these predictions to our sensitivity, we find that we should be able to detect a galaxy around 0.5-1.0 L* (LBG) for most of our observations. We find only one new possible candidate, that near LBQS0010-0012. This scarcity of candidates leads us to the conclusion that most DLA systems are not drawn from a normal LBG luminosity function nor a local galaxy luminosity function placed at these high redshifts.
46 - S. J. Curran 2002
We present a catalogue of the 322 damped Lyman alpha absorbers taken from the literature. All damped Lyman alpha absorbers are included, with no selection on redshift or quasar magnitude. Of these, 123 are candidates and await confirmation using high resolution spectroscopy. For all 322 objects we catalogue the radio properties of the background quasars, where known. Around 60 quasars have radio flux densities above 0.1 Jy and approximately half of these have optical magnitudes brighter than V = 18. This compilation should prove useful in several areas of extragalactic/cosmological research.
We have identified a metal-strong (logN(Zn+) > 13.15 or logN(Si+) > 15.95) DLA (MSDLA) population from an automated quasar (QSO) absorber search in the Sloan Digital Sky Survey Data Release 3 (SDSS-DR3) quasar sample, and find that MSDLAs comprise ~5% of the entire DLA population with z_abs > 2.2 found in QSO sightlines with r < 19.5. We have also acquired 27 Keck ESI follow-up spectra of metal-strong candidates to evaluate our automated technique and examine the MSDLA candidates at higher resolution. We demonstrate that the rest equivalent widths of strong ZnII 2026 and SiII 1808 lines in low-resolution SDSS spectra are accurate metal-strong indicators for higher-resolution spectra, and predict the observed equivalent widths and signal-to-noise ratios needed to detect certain extremely weak lines with high-resolution instruments. We investigate how the MSDLAs may affect previous studies concerning a dust-obscuration bias and the N(HI)-weighted cosmic mean metallicity <Z(z)>. Finally, we include a brief discussion of abundance ratios in our ESI sample and find that underlying mostly Type II supernovae enrichment are differential depletion effects due to dust (and in a few cases quite strong); we present here a handful of new Ti and Mn measurements, both of which are useful probes of depletion in DLAs. Future papers will present detailed examinations of particularly metal-strong DLAs from high-resolution KeckI/HIRES and VLT/UVES spectra.
We report evidence for a bimodality in damped Ly systems (DLAs). Using [C II] 158 mu cooling rates, lc, we find a distribution with peaks at lc=10^-27.4 and 10^-26.6 ergs s^-1 H^-1 separated by a trough at lc^crit ~= lc < 10^-27.0 ergs s^-1 H^-1. We divide the sample into low cool DLAs with lc < lc^crit and high cool DLAs with lc > lc^crit and find the Kolmogorv-Smirnov probabilities that velocity width, metallicity, dust-to-gas ratio, and Si II equivalent width in the two subsamples are drawn from the same parent population are small. All these quantities are significantly larger in the high cool population, while the H I column densities are indistinguishable in the two populations. We find that heating by X-ray and FUV background radiation is insufficient to balance the cooling rates of either population. Rather, the DLA gas is heated by local radiation fields. The rare appearance of faint, extended objects in the Hubble Ultra Deep Field rules out in situ star formation as the dominant star-formation mode for the high cool population, but is compatible with in situ star formation as the dominant mode for the low cool population. Star formation in the high cool DLAs likely arises in Lyman Break galaxies. We investigate whether these properties of DLAs are analogous to the bimodal properties of nearby galaxies. Using Si II equivalent width as a mass indicator, we construct bivariate distributions of metallicity, lc, and areal SFR versus the mass indicators. Tentative evidence is found for correlations and parallel sequences, which suggest similarities between DLAs and nearby galaxies. We suggest that the transition-mass model provides a plausible scenario for the bimodality we have found. As a result, the bimodality in current galaxies may have originated in DLAs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا