Do you want to publish a course? Click here

GRB 070707: the first short gamma-ray burst observed by INTEGRAL

148   0   0.0 ( 0 )
 Added by Sinead McGlynn
 Publication date 2008
  fields Physics
and research's language is English
 Authors S. McGlynn




Ask ChatGPT about the research

INTEGRAL has observed 47 long-duration GRBs (T_90 > 2s) and 1 short-duration GRB (T_90 < 2s) in five years of observation since October 2002. This work presents the properties of the prompt emission of GRB 070707, which is the first short hard GRB observed by INTEGRAL. The spectral and temporal properties of GRB 070707 were determined using the two sensitive coded-mask gamma-ray instruments on board INTEGRAL, IBIS and SPI. The T_90 duration was 0.8s, and the spectrum of the prompt emission was obtained by joint deconvolution of IBIS and SPI data to yield a best fit power-law with photon index alpha = -1.19 +0.14 -0.13, which is consistent with the characteristics of short-hard gamma-ray bursts. The peak flux over 1 second was 1.79 photons/cm^2/s and the fluence over the same interval was 2.07 x 10^-7 erg/cm^2 in the energy range 20-200keV. The spectral lag measured between 25-50keV and 100-300keV is 20 +/- 5ms, consistent with the small or negligible lags measured for short bursts. The spectral and temporal properties of GRB 070707 are comparable to those of the short hard bursts detected by other gamma-ray satellites, including BATSE and Swift. We estimate a lower limit on the Lorentz factor Gamma >~ 25 for GRB 070707, assuming the typical redshift for short GRBs of z=0.35. This limit is consistent with previous estimates for short GRBs and is smaller than the lower limits of Gamma >~ 100 calculated for long GRBs. If GRB 070707 is a member of the recently postulated class of short GRBs at z ~ 1, the lower limit on Gamma increases to Gamma >~ 35.



rate research

Read More

The HETE-2 FREGATE and WXM instruments detected a short, hard GRB at 00:26:18.72 UT on 31 May 2002. A preliminary localization was reported as a GCN Position Notice 88 min after the burst, and a refined localization was disseminated 123 minutes later. An IPN localization of the burst was reported 18 hours after the GRB, and a refined IPN localization was disseminated ~5 days after the burst. The final IPN localization, disseminated on 25 July 2002, is a diamond-shaped region centered on RA=15h 15m 11.18s, Dec=-19o 24 27.08 (J2000), and has an area of ~9 square arcminutes (99.7% confidence region). The prompt localization of the burst by HETE-2, coupled with the refinement of the localization by the IPN, made possible the most sensitive follow-up observations to date of a short, hard GRB at radio, optical, and X-ray wavelengths. The time history of GRB020531 at high (>30 keV) energies consists of a short, intense spike followed by a much less intense secondary peak, which is characteristic of many short, hard bursts. The duration of the burst increases with decreasing energy and the spectrum of the burst evolves from hard to soft, behaviors which are similar to those of long GRBs. This suggests that short, hard GRBs are closely related to long GRBs.
Gamma-Ray Bursts (GRBs) fall into two classes: short-hard and long-soft bursts. The latter are now known to have X-ray and optical afterglows, to occur at cosmological distances in star-forming galaxies, and to be associated with the explosion of massive stars. In contrast, the distance scale, the energy scale, and the progenitors of short bursts have remained a mystery. Here we report the discovery of a short-hard burst whose accurate localization has led to follow-up observations that have identified the X-ray afterglow and (for the first time) the optical afterglow of a short-hard burst. These, in turn, have led to identification of the host galaxy of the burst as a late-type galaxy at z=0.16 showing that at least some short-hard bursts occur at cosmological distances in the outskirts of galaxies, and are likely to be due to the merging of compact binaries.
GRB 040403 is one of the faintest gamma-ray bursts for which a rapid and accurate localization has been obtained. Here we report on the gamma-ray properties of this burst, based on observations with the IBIS instrument aboard INTEGRAL, and the results of searches for its optical afterglow. The steep spectrum (power law photon index = 1.9 in the 20-200 keV range) implies that GRB 040403 is most likely an X-ray rich burst. Our optical limit of R > 24.2 at 16.5 hours after the burst, indicates a rather faint afterglow, similar to those seen in other relatively soft and faint bursts.
It has long been known that there are two classes of gamma-ray bursts (GRBs), mainly distinguished by their durations. The breakthrough in our understanding of long-duration GRBs (those lasting more than ~2 s), which ultimately linked them with energetic Type Ic supernovae, came from the discovery of their long-lived X-ray and optical afterglows, when precise and rapid localizations of the sources could finally be obtained. X-ray localizations have recently become available for short (duration <2 s) GRBs, which have evaded optical detection for more than 30 years. Here we report the first discovery of transient optical emission (R-band magnitude ~23) associated with a short burst; GRB 050709. The optical afterglow was localized with subarcsecond accuracy, and lies in the outskirts of a blue dwarf galaxy. The optical and X-ray afterglow properties 34 h after the GRB are reminiscent of the afterglows of long GRBs, which are attributable to synchrotron emission from ultrarelativistic ejecta. We did not, however, detect a supernova, as found in most nearby long GRB afterglows, which suggests a different origin for the short GRBs.
The coincident detection of GW170817 in gravitational waves and electromagnetic radiation spanning the radio to MeV gamma-ray bands provided the first direct evidence that short gamma-ray bursts (GRBs) can originate from binary neutron star (BNS) mergers. On the other hand, the properties of short GRBs in high-energy gamma rays are still poorly constrained, with only $sim$20 events detected in the GeV band, and none in the TeV band. GRB~160821B is one of the nearest short GRBs known at $z=0.162$. Recent analyses of the multiwavelength observational data of its afterglow emission revealed an optical-infrared kilonova component, characteristic of heavy-element nucleosynthesis in a BNS merger. Aiming to better clarify the nature of short GRBs, this burst was automatically followed up with the MAGIC telescopes, starting from 24 seconds after the burst trigger. Evidence of a gamma-ray signal is found above $sim$0.5 TeV at a significance of $sim3,sigma$ during observations that lasted until 4 hours after the burst. Assuming that the observed excess events correspond to gamma-ray emission from GRB 160821B, in conjunction with data at other wavelengths, we investigate its origin in the framework of GRB afterglow models. The simplest interpretation with one-zone models of synchrotron-self-Compton emission from the external forward shock has difficulty accounting for the putative TeV flux. Alternative scenarios are discussed where the TeV emission can be relatively enhanced. The role of future GeV-TeV observations of short GRBs in advancing our understanding of BNS mergers and related topics is briefly addressed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا