We investigate the stability of spatially uniform solutions for the collisionless dynamics of a fermionic superfluid. We demonstrate that, if the system size is larger than the superfluid coherence length, the solution characterized by a periodic in time order parameter is unstable with respect to spatial fluctuations. The instability is due to the parametric excitations of pairing modes with opposite momenta. The growth of spatial modulations is suppressed by nonlinear effects resulting in a state characterized by a random superposition of wave packets of the superfluid order parameter. We suggest that this state can be probed by spectroscopic noise measurements.