Do you want to publish a course? Click here

Youngs axiomatization of the Shapley value - a new proof

96   0   0.0 ( 0 )
 Added by Mikl\\'os Pint\\'er
 Publication date 2012
and research's language is English
 Authors M. Pinter




Ask ChatGPT about the research

We consider Young (1985)s characterization of the Shapley value, and give a new proof of this axiomatization. Moreover, as applications of the new proof, we show that Young (1985)s axiomatization of the Shapley value works on various well-known subclasses of TU games.



rate research

Read More

This paper concerns the analysis of the Shapley value in matching games. Matching games constitute a fundamental class of cooperative games which help understand and model auctions and assignments. In a matching game, the value of a coalition of vertices is the weight of the maximum size matching in the subgraph induced by the coalition. The Shapley value is one of the most important solution concepts in cooperative game theory. After establishing some general insights, we show that the Shapley value of matching games can be computed in polynomial time for some special cases: graphs with maximum degree two, and graphs that have a small modular decomposition into cliques or cocliques (complete k-partite graphs are a notable special case of this). The latter result extends to various other well-known classes of graph-based cooperative games. We continue by showing that computing the Shapley value of unweighted matching games is #P-complete in general. Finally, a fully polynomial-time randomized approximation scheme (FPRAS) is presented. This FPRAS can be considered the best positive result conceivable, in view of the #P-completeness result.
The attribution problem, that is the problem of attributing a models prediction to its base features, is well-studied. We extend the notion of attribution to also apply to feature interactions. The Shapley value is a commonly used method to attribute a models prediction to its base features. We propose a generalization of the Shapley value called Shapley-Taylor index that attributes the models prediction to interactions of subsets of features up to some size k. The method is analogous to how the truncated Taylor Series decomposes the function value at a certain point using its derivatives at a different point. In fact, we show that the Shapley Taylor index is equal to the Taylor Series of the multilinear extension of the set-theoretic behavior of the model. We axiomatize this method using the standard Shapley axioms -- linearity, dummy, symmetry and efficiency -- and an additional axiom that we call the interaction distribution axiom. This new axiom explicitly characterizes how interactions are distributed for a class of functions that model pure interaction. We contrast the Shapley-Taylor index against the previously proposed Shapley Interaction index (cf. [9]) from the cooperative game theory literature. We also apply the Shapley Taylor index to three models and identify interesting qualitative insights.
Game-theoretic attribution techniques based on Shapley values are used extensively to interpret black-box machine learning models, but their exact calculation is generally NP-hard, requiring approximation methods for non-trivial models. As the computation of Shapley values can be expressed as a summation over a set of permutations, a common approach is to sample a subset of these permutations for approximation. Unfortunately, standard Monte Carlo sampling methods can exhibit slow convergence, and more sophisticated quasi Monte Carlo methods are not well defined on the space of permutations. To address this, we investigate new approaches based on two classes of approximation methods and compare them empirically. First, we demonstrate quadrature techniques in a RKHS containing functions of permutations, using the Mallows kernel to obtain explicit convergence rates of $O(1/n)$, improving on $O(1/sqrt{n})$ for plain Monte Carlo. The RKHS perspective also leads to quasi Monte Carlo type error bounds, with a tractable discrepancy measure defined on permutations. Second, we exploit connections between the hypersphere $mathbb{S}^{d-2}$ and permutations to create practical algorithms for generating permutation samples with good properties. Experiments show the above techniques provide significant improvements for Shapley value estimates over existing methods, converging to a smaller RMSE in the same number of model evaluations.
In this paper, we consider permutation manipulations by any subset of women in the Gale-Shapley algorithm. This paper is motivated by the college admissions process in China. Our results also answer Gusfield and Irvings open problem on what can be achieved by permutation manipulations. We present an efficient algorithm to find a strategy profile such that the induced matching is stable and Pareto-optimal while the strategy profile itself is inconspicuous. Surprisingly, we show that such a strategy profile actually forms a Nash equilibrium of the manipulation game. We also show that a strong Nash equilibrium or a super-strong Nash equilibrium does not always exist in general and it is NP-hard to check the existence of these equilibria. We consider an alternative notion of strong Nash equilibria and super-strong Nash equilibrium. Under such notions, we characterize the super-strong Nash equilibrium by Pareto-optimal strategy profiles. In the end, we show that it is NP-complete to find a manipulation that is strictly better for all members of the coalition. This result demonstrates a sharp contrast between weakly better-off outcomes and strictly better-off outcomes.
For feature selection and related problems, we introduce the notion of classification game, a cooperative game, with features as players and hinge loss based characteristic function and relate a features contribution to Shapley value based error apportioning (SVEA) of total training error. Our major contribution is ($star$) to show that for any dataset the threshold 0 on SVEA value identifies feature subset whose joint interactions for label prediction is significant or those features that span a subspace where the data is predominantly lying. In addition, our scheme ($star$) identifies the features on which Bayes classifier doesnt depend but any surrogate loss function based finite sample classifier does; this contributes to the excess $0$-$1$ risk of such a classifier, ($star$) estimates unknown true hinge risk of a feature, and ($star$) relate the stability property of an allocation and negative valued SVEA by designing the analogue of core of classification game. Due to Shapley values computationally expensive nature, we build on a known Monte Carlo based approximation algorithm that computes characteristic function (Linear Programs) only when needed. We address the potential sample bias problem in feature selection by providing interval estimates for SVEA values obtained from multiple sub-samples. We illustrate all the above aspects on various synthetic and real datasets and show that our scheme achieves better results than existing recursive feature elimination technique and ReliefF in most cases. Our theoretically grounded classification game in terms of well defined characteristic function offers interpretability (which we formalize in terms of final task) and explainability of our framework, including identification of important features.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا