No Arabic abstract
We discuss photogenerated midgap states of a one-dimensional (1D) dimerized Mott insulator, potassium-tetracyanoquinodimethane (K-TCNQ). Two types of phonon modes are taken into account: intermolecular and intramolecular vibrations. We treat these phonon modes adiabatically and analyze a theoretical model by using the density-matrix renormalization group (DMRG). Our numerical results demonstrate that the intermolecular lattice distortion is necessary to reproduce the photoinduced midgap absorption in K-TCNQ. We find two types of midgap states. One is a usual polaronic state characterized by a localized elementary excitation. The other is superposition of two types of excitations, a doped-carrier state and a triplet-dimer state, which can be generally observed in 1D dimerized Mott insulators, not limited to K-TCNQ.
Using a nonequilibrium implementation of the extended dynamical mean field theory (EDMFT) we simulate the relaxation after photo excitation in a strongly correlated electron system with antiferromagnetic spin interactions. We consider the $t$-$J$ model and focus on the interplay between the charge- and spin-dynamics in different excitation and doping regimes. The appearance of string states after a weak photo excitation manifests itself in a nontrivial scaling of the relaxation time with the exchange coupling and leads to a correlated oscillatory evolution of the kinetic energy and spin-spin correlation function. A strong excitation of the system, on the other hand, suppresses the spin correlations and results in a relaxation that is controlled by hole scattering. We discuss the possibility of detecting string states in optical and cold atom experiments.
The competition between electron localization and de-localization in Mott insulators underpins the physics of strongly-correlated electron systems. Photo-excitation, which re-distributes charge between sites, can control this many-body process on the ultrafast timescale. To date, time-resolved studies have been performed in solids in which other degrees of freedom, such as lattice, spin, or orbital excitations come into play. However, the underlying quantum dynamics of bare electronic excitations has remained out of reach. Quantum many-body dynamics have only been detected in the controlled environment of optical lattices where the dynamics are slower and lattice excitations are absent. By using nearly-single-cycle near-IR pulses, we have measured coherent electronic excitations in the organic salt ET-F2TCNQ, a prototypical one-dimensional Mott Insulator. After photo-excitation, a new resonance appears on the low-energy side of the Mott gap, which oscillates at 25 THz. Time-dependent simulations of the Mott-Hubbard Hamiltonian reproduce the oscillations, showing that electronic delocalization occurs through quantum interference between bound and ionized holon-doublon pairs.
We investigate topological transport in a spin-orbit coupled bosonic Mott insulator. We show that interactions can lead to anomalous quasi-particle dynamics even when the spin-orbit coupling is abelian. To illustrate the latter, we consider the spin-orbit coupling realized in the experiment of Lin textit{et al}. [Nature (London) textbf{471}, 83 (2011)]. For this spin-orbit coupling, we compute the quasiparticle dispersions and spectral weights, the interaction-induced momentum space Berry curvature, and the momentum space distribution of spin density, and propose experimental signatures. Furthermore, we find that in our approximation for the single-particle propagator, the ground state can in principle support an integer Hall conductivity if the sum of the Chern numbers of the hole bands is nonzero.
As an elementary particle the electron carries spin hbar/2 and charge e. When binding to the atomic nucleus it also acquires an angular momentum quantum number corresponding to the quantized atomic orbital it occupies (e.g., s, p or d). Even if electrons in solids form bands and delocalize from the nuclei, in Mott insulators they retain their three fundamental quantum numbers: spin, charge and orbital[1]. The hallmark of one-dimensional (1D) physics is a breaking up of the elementary electron into its separate degrees of freedom[2]. The separation of the electron into independent quasi-particles that carry either spin (spinons) or charge (holons) was first observed fifteen years ago[3]. Using Resonant Inelastic X-ray Scattering on the 1D Mott-insulator Sr2CuO3 we now observe also the orbital degree of freedom separating. We resolve an orbiton liberating itself from spinons and propagating through the lattice as a distinct quasi-particle with a substantial dispersion of ~0.2 eV.
The ferromagnetic semiconductor Ba2NiOsO6 (Tmag ~100 K) was synthesized at 6 GPa and 1500 {deg}C. It crystallizes into a double perovskite structure [Fm-3m; a = 8.0428(1) {AA}], where the Ni2+ and Os6+ ions are perfectly ordered at the perovskite B-site. We show that the spin-orbit coupling of Os6+ plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >21 kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te (Tmag < 180 K), the spin-gapless semiconductor Mn2CoAl (Tmag ~720 K), and the ferromagnetic insulators EuO (Tmag ~70 K) and Bi3Cr3O11 (Tmag ~220 K). It is also qualitatively different from known ferrimagnetic insulator/semiconductors, which are characterized by an antiparallel spin arrangement. Our finding of the ferromagnetic semiconductivity of Ba2NiOsO6 should increase interest in the platinum group oxides, because this new class of materials should be useful in the development of spintronic, quantum magnetic, and related devices.