Do you want to publish a course? Click here

Observables sensitive to absolute neutrino masses. II

113   0   0.0 ( 0 )
 Added by Eligio Lisi
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this followup to Phys. Rev. D 75, 053001 (2007) [arXiv:hep-ph/0608060] we report updated constraints on neutrino mass-mixing parameters, in light of recent neutrino oscillation data (KamLAND, SNO, and MINOS) and cosmological observations (WMAP 5-year and other data). We discuss their interplay with the final 0nu2beta decay results in 76-Ge claimed by part of the Heidelberg-Moscow Collaboration, using recent evaluations of the corresponding nuclear matrix elements, and their uncertainties. We also comment on the 0nu2beta limits in 130-Te recently set by Cuoricino, and on prospective limits or signals from the KATRIN experiment.



rate research

Read More

179 - G.L. Fogli , E. Lisi , A. Marrone 2004
In the context of three-flavor neutrino mixing, we present a thorough study of the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in Tritium beta decay (m_beta); the effective Majorana neutrino mass in neutrinoless double beta decay (m_2beta); and the sum of neutrino masses in cosmology (Sigma). We discuss the correlations among these variables which arise from the combination of all the available neutrino oscillation data, in both normal and inverse neutrino mass hierarchy. We set upper limits on m_beta by combining updated results from the Mainz and Troitsk experiments. We also consider the latest results on m_2beta from the Heidelberg-Moscow experiment, both with and without the lower bound claimed by such experiment. We derive upper limits on Sigma from an updated combination of data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite and the 2 degrees Fields (2dF) Galaxy Redshifts Survey, with and without Lyman-alpha forest data from the Sloan Digital Sky Survey (SDSS), in models with a non-zero running of the spectral index of primordial inflationary perturbations. The results are discussed in terms of two-dimensional projections of the globally allowed region in the (m_beta,m_2beta,Sigma) parameter space, which neatly show the relative impact of each data set. In particular, the (in)compatibility between Sigma and m_2beta constraints is highlighted for various combinations of data. We also briefly discuss how future neutrino data (both oscillatory and non-oscillatory) can further probe the currently allowed regions.
We revisit our previous work [Phys. Rev. D 95, 096014 (2017)] where neutrino oscillation and nonoscillation data were analyzed in the standard framework with three neutrino families, in order to constrain their absolute masses and to probe their ordering (either normal, NO, or inverted, IO). We include updated oscillation results to discuss best fits and allowed ranges for the two squared mass differences $delta m^2$ and $Delta m^2$, the three mixing angles $theta_{12}$, $theta_{23}$ and $theta_{13}$, as well as constraints on the CP-violating phase $delta$, plus significant indications in favor of NO vs IO at the level of $Deltachi^2=10.0$. We then consider nonoscillation data from beta decay, from neutrinoless double beta decay (if neutrinos are Majorana), and from various cosmological input variants (in the data or the model) leading to results dubbed as default, aggressive, and conservative. In the default option, we obtain from nonoscillation data an extra contribution $Deltachi^2 = 2.2$ in favor of NO, and an upper bound on the sum of neutrino masses $Sigma < 0.15$ eV at $2sigma$; both results - dominated by cosmology - can be strengthened or weakened by using more aggressive or conservative options, respectively. Taking into account such variations, we find that the combination of all (oscillation and nonoscillation) neutrino data favors NO at the level of $3.2-3.7sigma$, and that $Sigma$ is constrained at the $2sigma$ level within $Sigma < 0.12-0.69$ eV. The upper edge of this allowed range corresponds to an effective $beta$-decay neutrino mass $m_beta = Sigma/3 = 0.23$ eV, at the sensitivity frontier of the KATRIN experiment.
Within the standard three-neutrino framework, the absolute neutrino masses and their ordering (either normal, NO, or inverted, IO) are currently unknown. However, the combination of current data coming from oscillation experiments, neutrinoless double beta decay searches, and cosmological surveys, can provide interesting constraints for such unknowns in the sub-eV mass range, down to O(0.1) eV in some cases. We discuss current limits on absolute neutrino mass observables by performing a global data analysis, that includes the latest results from oscillation experiments, neutrinoless double beta decay bounds from the KamLAND-Zen experiment, and constraints from representative combinations of Planck measurements and other cosmological data sets. In general, NO appears to be somewhat favored with respect to IO at the level of ~2 sigma, mainly by neutrino oscillation data (especially atmospheric), corroborated by cosmological data in some cases. Detailed constraints are obtained via the chi^2 method, by expanding the parameter space either around separate minima in NO and IO, or around the absolute minimum in any ordering. Implications for upcoming oscillation and non-oscillation neutrino experiments, including beta-decay searches, are also discussed.
With the KATRIN experiment, the determination of the absolute neutrino mass scale down to cosmologically favored values has come into reach. We show that this measurement provides the missing link between the Standard Model and the dark sector in scotogenic models, where the suppression of the neutrino masses is economically explained by their only indirect coupling to the Higgs field. We determine the linear relation between the electron neutrino mass and the scalar coupling $lambda_5$ associated with the dark neutral scalar mass splitting to be $lambda_5=3.1times10^{-9} m_{ u_e}/$eV. This relation then induces correlations among the DM and new scalar masses and their Yukawa couplings. Together, KATRIN and future lepton flavor violation experiments can then probe the fermion DM parameter space, irrespective of the neutrino mass hierarchy and CP phase.
93 - J.F. Beacom 1999
Core-collapse supernovae emit of order $10^{58}$ neutrinos and antineutrinos of all flavors over several seconds, with average energies of 10--25 MeV. In the Sudbury Neutrino Observatory (SNO), a future Galactic supernova at a distance of 10 kpc would cause several hundred events. The $ u_mu$ and $ u_tau$ neutrinos and antineutrinos are of particular interest, as a test of the supernova mechanism. In addition, it is possible to measure or limit their masses by their delay (determined from neutral-current events) relative to the $bar{ u}_e$ neutrinos (determined from charged-current events). Numerical results are presented for such a future supernova as seen in SNO. Under reasonable assumptions, and in the presence of the expected counting statistics, a $ u_mu$ or $ u_tau$ mass down to about 30 eV can be simply and robustly determined. This seems to be the best technique for direct measurement of these masses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا