No Arabic abstract
The effects of quenched disorder on nonequilibrium phase transitions in the directed percolation universality class are revisited. Using a strong-disorder energy-space renormalization group, it is shown that for any amount of disorder the critical behavior is controlled by an infinite-randomness fixed point in the universality class of the random transverse-field Ising models. The experimental relevance of our results are discussed.
We study the percolation properties of graph partitioning on random regular graphs with N vertices of degree $k$. Optimal graph partitioning is directly related to optimal attack and immunization of complex networks. We find that for any partitioning process (even if non-optimal) that partitions the graph into equal sized connected components (clusters), the system undergoes a percolation phase transition at $f=f_c=1-2/k$ where $f$ is the fraction of edges removed to partition the graph. For optimal partitioning, at the percolation threshold, we find $S sim N^{0.4}$ where $S$ is the size of the clusters and $ellsim N^{0.25}$ where $ell$ is their diameter. Additionally, we find that $S$ undergoes multiple non-percolation transitions for $f<f_c$.
We show that the dynamics of simple disordered models, like the directed Trap Model and the Random Energy Model, takes place at a coexistence point between active and inactive dynamical phases. We relate the presence of a dynamic phase transition in these models to the extreme value statistics of the associated random energy landscape.
We investigate the behavior of nonequilibrium phase transitions under the influence of disorder that locally breaks the symmetry between two symmetrical macroscopic absorbing states. In equilibrium systems such random-field disorder destroys the phase transition in low dimensions by preventing spontaneous symmetry breaking. In contrast, we show here that random-field disorder fails to destroy the nonequilibrium phase transition of the one- and two-dimensional generalized contact process. Instead, it modifies the dynamics in the symmetry-broken phase. Specifically, the dynamics in the one-dimensional case is described by a Sinai walk of the domain walls between two different absorbing states. In the two-dimensional case, we map the dynamics onto that of the well studied low-temperature random-field Ising model. We also study the critical behavior of the nonequilibrium phase transition and characterize its universality class in one dimension. We support our results by large-scale Monte Carlo simulations, and we discuss the applicability of our theory to other systems.
We explore a class of random tensor network models with ``stabilizer local tensors which we name Random Stabilizer Tensor Networks (RSTNs). For RSTNs defined on a two-dimensional square lattice, we perform extensive numerical studies of entanglement phase transitions between volume-law and area-law entangled phases of the one-dimensional boundary states. These transitions occur when either (a) the bond dimension $D$ of the constituent tensors is varied, or (b) the tensor network is subject to random breaking of bulk bonds, implemented by forced measurements. In the absence of broken bonds, we find that the RSTN supports a volume-law entangled boundary state with bond dimension $Dgeq3$ where $D$ is a prime number, and an area-law entangled boundary state for $D=2$. Upon breaking bonds at random in the bulk with probability $p$, there exists a critical measurement rate $p_c$ for each $Dgeq 3$ above which the boundary state becomes area-law entangled. To explore the conformal invariance at these entanglement transitions for different prime $D$, we consider tensor networks on a finite rectangular geometry with a variety of boundary conditions, and extract universal operator scaling dimensions via extensive numerical calculations of the entanglement entropy, mutual information and mutual negativity at their respective critical points. Our results at large $D$ approach known universal data of percolation conformal field theory, while showing clear discrepancies at smaller $D$, suggesting a distinct entanglement transition universality class for each prime $D$. We further study universal entanglement properties in the volume-law phase and demonstrate quantitative agreement with the recently proposed description in terms of a directed polymer in a random environment.
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the topology of a network. We consider the q-state Potts model on an uncorrelated scale-free network for which the node-degree distribution manifests a power-law decay governed by the exponent lambda. We work within the mean-field approximation, since for systems on random uncorrelated scale-free networks this method is known to often give asymptotically exact results. Depending on particular values of q and lambda one observes either a first-order or a second-order phase transition or the system is ordered at any finite temperature. In a case study, we consider the limit q=1 (percolation) and find a correspondence between the magnetic exponents and those describing percolation on a scale-free network. Interestingly, logarithmic corrections to scaling appear at lambda=4 in this case.