Do you want to publish a course? Click here

KW-sections for exceptional type Vinbergs $theta$-groups

155   0   0.0 ( 0 )
 Added by Paul Levy
 Publication date 2010
  fields
and research's language is English
 Authors Paul Levy




Ask ChatGPT about the research

Let $k$ be an algebraically closed field of characteristic not equal to 2 or 3, let $G$ be an almost simple algebraic group of type $F_4$, $G_2$ or $D_4$ and let $theta$ be an automorphism of $G$ of finite order, coprime to the characteristic. In this paper we consider the $theta$-group (in the sense of Vinberg) associated to these choices; we classify the positive rank automorphisms and give their Kac diagrams and we describe the little Weyl group in each case. As a result we show that all such $theta$-groups have KW-sections, confirming a conjecture of Popov in these cases.



rate research

Read More

Popov has recently introduced an analogue of Jordan classes (packets, or decomposition classes) for the action of a theta-group (G_0,V), showing that they are finitely-many, locally-closed, irreducible unions of G_0-orbits of constant dimension partitioning V. We carry out a local study of their closures showing that Jordan classes are smooth and that their closure is a union of Jordan classes. We parametrize Jordan classes and G_0-orbits in a given class in terms of the action of subgroups of Vinbergs little Weyl group, and include several examples and counterexamples underlying the differences with the symmetric case and the critical issues arising in the theta-situation.
In this paper we initiate the study of the maximal subalgebras of exceptional simple classical Lie algebras g over algebraically closed fields k of positive characteristic p, such that the prime characteristic is good for g. In this paper we deal with what is surely the most unnatural case; that is, where the maximal subalgebra in question is a simple subalgebra of non-classical type. We show that only the first Witt algebra can occur as a subalgebra of g and give explicit details on when it may be maximal in g.
150 - Paul Levy 2008
We generalize the basic results of Vinbergs theta-groups, or periodically graded reductive Lie algebras, to fields of good positive characteristic. To this end we clarify the relationship between the little Weyl group and the (standard) Weyl group. We deduce that the ring of invariants associated to the grading is a polynomial ring. This approach allows us to prove the existence of a KW-section for a classical graded Lie algebra (in zero or good characteristic), confirming a conjecture of Popov in this case.
We consider algebras with basis numerated by elements of a group $G.$ We fix a function $f$ from $Gtimes G$ to a ground field and give a multiplication of the algebra which depends on $f$. We study the basic properties of such algebras. In particular, we find a condition on $f$ under which the corresponding algebra is a Leibniz algebra. Moreover, for a given subgroup $hat G$ of $G$ we define a $hat G$-periodic algebra, which corresponds to a $hat G$-periodic function $f,$ we establish a criterion for the right nilpotency of a $hat G$-periodic algebra. In addition, for $G=mathbb Z$ we describe all $2mathbb Z$- and $3mathbb Z$-periodic algebras. Some properties of $nmathbb Z$-periodic algebras are obtained.
We study the higher Frobenius-Schur indicators of the representations of the Drinfeld double of a finite group G, in particular the question as to when all the indicators are integers. This turns out to be an interesting group-theoretic question. We show that many groups have this property, such as alternating and symmetric groups, PSL_2(q), M_{11}, M_{12} and regular nilpotent groups. However we show there is an irregular nilpotent group of order 5^6 with non-integer indicators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا