Do you want to publish a course? Click here

The Sloan Lens ACS Survey. VII. Elliptical Galaxy Scaling Laws from Direct Observational Mass Measurements

189   0   0.0 ( 0 )
 Added by Adam S. Bolton
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use a sample of 53 massive early-type strong gravitational lens galaxies with well-measured redshifts (ranging from z=0.06 to 0.36) and stellar velocity dispersions (between 175 and 400 km/s) from the Sloan Lens ACS (SLACS) Survey to derive numerous empirical scaling relations. The ratio between central stellar velocity dispersion and isothermal lens-model velocity dispersion is nearly unity within errors. The SLACS lenses define a fundamental plane (FP) that is consistent with the FP of the general population of early-type galaxies. We measure the relationship between strong-lensing mass M_lens within one-half effective radius (R_e/2) and the dimensional mass variable M_dim = G^-1 sigma_e2^2 R_e/2 to be log_10 [M_lens/10^11 M_Sun] = (1.03 +/- 0.04) log_10 [M_dim/10^11 M_Sun] + (0.54 +/- 0.02) (where sigma_e2 is the projected stellar velocity dispersion within R_e/2). The near-unity slope indicates that the mass-dynamical structure of massive elliptical galaxies is independent of mass, and that the tilt of the SLACS FP is due entirely to variation in total (luminous plus dark) mass-to-light ratio with mass. Our results imply that dynamical masses serve as a good proxies for true masses in massive elliptical galaxies. Regarding the SLACS lenses as a homologous population, we find that the average enclosed 2D mass profile goes as log_10 [M(<R)/M_dim] = (1.10 +/- 0.09) log_10 [R/R_e] + (0.85 +/- 0.03), consistent with an isothermal (flat rotation curve) model when de-projected into 3D. This measurement is inconsistent with the slope of the average projected aperture luminosity profile at a confidence level greater than 99.9%, implying a minimum dark-matter fraction of f_DM = 0.38 +/- 0.07 within one effective radius. (abridged)

rate research

Read More

134 - Adam S. Bolton 2008
We present the definitive data for the full sample of 131 strong gravitational lens candidates observed with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope by the Sloan Lens ACS (SLACS) Survey. All targets were selected for higher-redshift emission lines and lower-redshift continuum in a single Sloan Digital Sky Survey (SDSS) spectrum. The foreground galaxies are primarily of early-type morphology, with redshifts from approximately 0.05 to 0.5 and velocity dispersions from 160 km/s to 400 km/s; the faint background emission-line galaxies have redshifts ranging from about 0.2 to 1.2. We confirm 70 systems showing clear evidence of multiple imaging of the background galaxy by the foreground galaxy, as well as an additional 19 systems with probable multiple imaging. For 63 clear lensing systems, we present singular isothermal ellipsoid and light-traces-mass gravitational lens models fitted to the ACS imaging data. These strong-lensing mass measurements are supplemented by magnitudes and effective radii measured from ACS surface-brightness photometry and redshifts and velocity dispersions measured from SDSS spectroscopy. These data constitute a unique resource for the quantitative study of the inter-relations between mass, light, and kinematics in massive early-type galaxies. We show that the SLACS lens sample is statistically consistent with being drawn at random from a parent sample of SDSS galaxies with comparable spectroscopic parameters and effective radii, suggesting that the results of SLACS analyses can be generalized to the massive early-type population.
We use stellar masses, photometry, lensing, and velocity dispersions to investigate empirical correlations for the final sample of 73 early-type lens galaxies (ETGs) from the SLACS survey. The traditional correlations (Fundamental Plane [FP] and its projections) are consistent with those found for non-lens galaxies, supporting the thesis that SLACS lens galaxies are representative of massive ETGs. The addition of strong lensing estimates of the total mass allows us to gain further insights into their internal structure: i) the mean slope of the total mass density profile is <gamma> = 2.078+/-0.027 with an intrinsic scatter of 0.16+/-0.02; ii) gamma correlates with effective radius and central mass density, in the sense that denser galaxies have steeper profiles; iii) the dark matter fraction within reff/2 is a monotonically increasing function of galaxy mass and size; iv) the dimensional mass M_dim is proportional to the total mass, and both increase more rapidly than stellar mass M*; v) the Mass Plane (MP), obtained by replacing surface brightness with surface mass density in the FP, is found to be tighter and closer to the virial relation than the FP and the M*P, indicating that the scatter of those relations is dominated by stellar population effects; vi) we construct the Fundamental Hyper-Plane by adding stellar masses to the MP and find the M* coefficient to be consistent with zero and no residual intrinsic scatter. Our results demonstrate that the dynamical structure of ETGs is not scale invariant and that it is fully specified by the total mass, r_eff, and sigma. Although the basic trends can be explained qualitatively in terms of varying star formation efficiency as a function of halo mass and as the result of dry and wet mergers, reproducing quantitatively the observed correlations and their tightness may be a significant challenge for galaxy formation models.
We present the current photometric dataset for the Sloan Lens ACS (SLACS) Survey, including HST photometry from ACS, WFPC2, and NICMOS. These data have enabled the confirmation of an additional 15 grade `A (certain) lens systems, bringing the number of SLACS grade `A lenses to 85; including 13 grade `B (likely) systems, SLACS has identified nearly 100 lenses and lens candidates. Approximately 80% of the grade `A systems have elliptical morphologies while ~10% show spiral structure; the remaining lenses have lenticular morphologies. Spectroscopic redshifts for the lens and source are available for every system, making SLACS the largest homogeneous dataset of galaxy-scale lenses to date. We have developed a novel Bayesian stellar population analysis code to determine robust stellar masses with accurate error estimates. We apply this code to deep, high-resolution HST imaging and determine stellar masses with typical statistical errors of 0.1 dex; we find that these stellar masses are unbiased compared to estimates obtained using SDSS photometry, provided that informative priors are used. The stellar masses range from 10^10.5 to 10^11.8 M$_odot$ and the typical stellar mass fraction within the Einstein radius is 0.4, assuming a Chabrier IMF. The ensemble properties of the SLACS lens galaxies, e.g. stellar masses and projected ellipticities, appear to be indistinguishable from other SDSS galaxies with similar stellar velocity dispersions. This further supports that SLACS lenses are representative of the overall population of massive early-type galaxies with M* >~ 10^11 M$_odot$, and are therefore an ideal dataset to investigate the kpc-scale distribution of luminous and dark matter in galaxies out to z ~ 0.5.
196 - T. Treu 2008
We study the relation between the internal structure of early-type galaxies and their environment using 70 strong gravitational lenses from the Sloan ACS Lens Survey. The Sloan database is used to determine two measures of overdensity of galaxies around each lens: the projected number density of galaxies inside the tenth nearest neighbor (Sigma_{10}) and within a cone of radius one h^{-1} Mpc (D_1). Our main results are: 1) The average overdensity is somewhat larger than unity, consistent with lenses preferring overdense environments as expected for massive early-type galaxies (12/70 lenses are in known groups/clusters). 2) The distribution of overdensities is indistinguishable from that of twin non-lens galaxies selected from SDSS to have the same redshift and stellar velocity dispersion sigma_*. Thus, within our errors, lens galaxies are an unbiased population, and the SLACS results can be generalized to the overall population of early-type galaxies. 3) Typical contributions from external mass distribution are no more than a few per cent, reaching 10-20% (~0.05-0.10 external convergence) only in the most extreme overdensities. 4) No significant correlation between overdensity and slope of the mass density profile of the lens is found. 5) Satellite galaxies (those with a more luminous companion) have marginally steeper mass density profiles than central galaxies (those without). This result suggests that tidal stripping may affect the mass structure of early-type galaxies down to kpc scales probed by strong lensing, when they fall into larger structures [ABRIDGED].
79 - C. N. Hao , S. Mao , Z. G. Deng 2006
We revisit the shapes of isophotes for elliptical (E) and lenticular (S0) galaxies by studying 847 nearby early-type galaxies selected from the Sloan Digital Sky Survey Data Release 4 with velocity dispersions above 200 km/s. The IRAF task {tt ellipse} was used to derive the deviations of the isophotes from pure ellipses (Fourier coefficients a_3/a and a_4/a), position angles and ellipticities as a function of radius. We show the statistical distributions of the a_3/a and a_4/a parameters as a function of velocity dispersion, magnitude, and colour. The a_4/a parameter is correlated with the ellipticity and absolute Petrosian magnitude of galaxies. No significant correlation was found between the a_4/a parameter with colour and velocity dispersion. A cross-correlation between the FIRST survey and the SDSS data reveals a lack of powerful radio emitters in discy E/S0s, as previously found by Bender et al. We also find that boxy E/S0s favor denser environments while discy E/S0s favor more isolated environments. The median values of changes in the ellipticity and position angle between one and one and a half Petrosian half-light radii in the isophotes are about -0.023 and 1.61 degree respectively. The average change in the position angle is much larger, about 4.12 degree, due to an extended tail. The change in ellipticity is weakly correlated with the ellipticity itself, with an increasing ellipticity for galaxies with higher ellipticity as the radius increases. The isophote parameters for the 847 galaxies are available online.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا