Do you want to publish a course? Click here

Use of group theory and Clifford algebra in the study of generalized Dirac equation for particles with arbitrary spin

132   0   0.0 ( 0 )
 Added by Israfil Guseinov
 Publication date 2012
  fields Physics
and research's language is English
 Authors I.I.Guseinov




Ask ChatGPT about the research

Using condition of relativistic invariance, group theory and Clifford algebra the component Lorentz invariance generalized Dirac equation for a particle with arbitrary mass and spin is suggested, where In the case of half-integral spin particles, this equation is reduced to the sets of two-component independent matrix equations. It is shown that the relativistic scalar and integral spin particles are described by component equation.



rate research

Read More

The internal degrees of freedom of fermions are in the spin-charge-family theory described by the Clifford algebra objects, which are superposition of an odd number of $gamma^a$s. Arranged into irreducible representations of eigenvectors of the Cartan subalgebra of the Lorentz algebra $S^{ab}$ $(= frac{i}{2} gamma^a gamma^b|_{a e b})$ these objects form $2^{frac{d}{2}-1}$ families with $2^{frac{d}{2}-1}$ family members each. Family members of each family offer the description of all the observed quarks and leptons and antiquarks and antileptons, appearing in families. Families are reachable by $tilde{S}^{ab}$ $=frac{1}{2} tilde{gamma}^a tilde{gamma}^b|_{a e b}$. Creation operators, carrying the family member and family quantum numbers form the basic vectors. The action of the operators $gamma^a$s, $S^{ab}$, $tilde{gamma}^a$s and $tilde{S}^{ab}$, applying on the basic vectors, manifests as matrices. In this paper the basic vectors in $d=(3+1)$ Clifford space are discussed, chosen in a way that the matrix representations of $gamma^a$ and of $S^{ab}$ coincide for each family quantum number, determined by $tilde{S}^{ab} $, with the Dirac matrices. The appearance of charges in Clifford space is discussed by embedding $d=(3+1)$ space into $d=(5+1)$-dimensional space.
115 - I. I. Guseinov 2012
The 2(2s+1)-component relativistic basis spinors for the arbitrary spin particles are established in position, momentum and four-dimensional spaces, where s=0,1 / 2,1, 3 / 2, 2, ... . These spinors for integral- and half-integral spins are reduced to the independent sets of one- and twocomponent spinors, respectively. Relations presented in this study can be useful in the linear combination of atomic orbitals approximation for the solution of generalized Dirac equation of arbitrary spin particles introduced by the author when the orthogonal basis sets of relativistic exponential type spinor wave functions and Slater type spinor orbitals in position, momentum and four -dimensional spaces are employed.
307 - Andrzej Okninski 2016
We study the 7x7 Hagen-Hurley equations describing spin 1 particles. We split these equations, in the interacting case, into two Dirac equations with non-standard solutions. It is argued that these solutions describe decay of a virtual W boson in beta decay.
We discuss the structure of the Dirac equation and how the nilpotent and the Majorana operators arise naturally in this context. This provides a link between Kauffmans work on discrete physics, iterants and Majorana Fermions and the work on nilpotent structures and the Dirac equation of Peter Rowlands. We give an expression in split quaternions for the Majorana Dirac equation in one dimension of time and three dimensions of space. Majorana discovered a version of the Dirac equation that can be expressed entirely over the real numbers. This led him to speculate that the solutions to his version of the Dirac equation would correspond to particles that are their own anti-particles. It is the purpose of this paper to examine the structure of this Majorana-Dirac Equation, and to find basic solutions to it by using the nilpotent technique. We succeed in this aim and describe our results.
134 - Nick G. Jones , Noah Linden 2021
We construct new families of spin chain Hamiltonians that are local, integrable and translationally invariant. To do so, we make use of the Clifford group that arises in quantum information theory. We consider translation invariant Clifford group transformations that can be described by matrix product operators (MPOs). We classify the translation invariant Clifford group transformations that consist of a shift operator and an MPO of bond dimension two -- this includes transformations that preserve locality of all Hamiltonians; as well as those that lead to non-local images of particular operators but nevertheless preserve locality of certain Hamiltonians. We characterise the translation invariant Clifford group transformations that take single-site Pauli operators to local operators on at most five sites -- examples of Quantum Cellular Automata -- leading to a discrete family of Hamiltonians that are equivalent to the canonical XXZ model under such transformations. For spin chains solvable by algebraic Bethe Ansatz, we explain how conjugating by a matrix product operator affects the underlying integrable structure. This allows us to relate our results to the usual classifications of integrable Hamiltonians. We also treat the case of spin chains solvable by free fermions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا