Do you want to publish a course? Click here

Lorentz Symmetry Violation and Galactic Magnetism

337   0   0.0 ( 0 )
 Added by Leonardo Campanelli
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the generation of primordial magnetic fields during de Sitter inflation in a Lorentz-violating theory of Electrodynamics containing a Chern-Simons term which couples the photon to an external four-vector. We find that, for appropriate magnitude of the four-vector, the generated field is maximally helical and, through an inverse cascade caused by turbulence of primeval plasma, reaches at the time of protogalactic collapse an intensity and correlation length such as to directly explain galactic magnetism.



rate research

Read More

244 - J. Alexandre 2013
We show how a mass mixing matrix can be generated dynamically, for two massless fermion flavours coupled to a Lorentz invariance violating (LIV) gauge field. The LIV features play the role of a regulator for the gap equations, and the non-analytic dependence of the dynamical masses, as functions of the gauge coupling, allows to consider the limit where the LIV gauge field eventually decouples from the fermions. Lorentz invariance is then recovered, to describe the oscillation between two free fermion flavours, and we check that the finite dynamical masses are the only effects of the original LIV theory.
97 - Baocheng Zhang 2020
Lorentz symmetry violation (LV) was recently proposed to be testable with a new method, in which the effect of the violation is described as a certain local interaction [R. Shaniv, et al, PRL 120, 103202 (2018)]. We revisit this LV effect in the paper and show that it is not only local, but it also represents a classical violation according to the recent quantum formulation of the Einstein equivalence principle (EEP). Based on a harmonically trapped spin-1/2 atomic system, we apply the results of table-top experiments testing LV effect to estimate the corresponding violation parameter in the quantum formulation of EEP. We find that the violation parameter is indeed very small, as expected by the earlier theoretical estimation.
We consider a model with a charged vector field along with a Cremmer-Scherk-Kalb-Ramond (CSKR) matter field coupled to a U(1) gauge potential. We obtain a natural Lorentz symmetry violation due to the local U(1) spontaneous symmetry breaking mechanism triggered by the imaginary part of the vector matter. The choice of the unitary gauge leads to the decoupling of the gauge-KR sector from the Higgs-KR sector. The excitation spectrum is carefully analyzed and the physical modes are identified. We propose an identification of the neutral massive spin-1 Higgs-like field with the massive Z boson of the so-called mirror matter models.
This work presents an experimental test of Lorentz invariance violation in the infrared (IR) regime by means of an invariant minimum speed in the spacetime and its effects on the time when an atomic clock given by a certain radioactive single-atom (e.g.: isotope $Na^{25}$) is a thermometer for a ultracold gas like the dipolar gas $Na^{23}K^{40}$. So, according to a Deformed Special Relativity (DSR) so-called Symmetrical Special Relativity (SSR), where there emerges an invariant minimum speed $V$ in the subatomic world, one expects that the proper time of such a clock moving close to $V$ in thermal equilibrium with the ultracold gas is dilated with respect to the improper time given in lab, i.e., the proper time at ultracold systems elapses faster than the improper one for an observer in lab, thus leading to the so-called {it proper time dilation} so that the atomic decay rate of a ultracold radioactive sample (e.g: $Na^{25}$) becomes larger than the decay rate of the same sample at room temperature. This means a suppression of the half-life time of a radioactive sample thermalized with a ultracold cloud of dipolar gas to be investigated by NASA in the Cold Atom Lab (CAL).
In this paper, we study the electromagnetic Casimir effects in the context of Lorentz symmetry violations. Two distinct approaches are considered: the first one is based on Horava-Lifshitz methodology, which explicitly presents a space-time anisotropy, while the second is a model that includes higher-derivatives in the field strength tensor and a preferential direction in the space-time. We assume that the electromagnetic field obeys the standard boundary conditions on two large parallel plates. Our main objectives are to investigate how the Casimir energy and pressure are modified in both Lorentz violation scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا