Do you want to publish a course? Click here

Monitoring Supergiant Fast X-ray Transients with Swift. I. Behavior outside outbursts

391   0   0.0 ( 0 )
 Added by Lara Sidoli
 Publication date 2008
  fields Physics
and research's language is English
 Authors L. Sidoli




Ask ChatGPT about the research

Supergiant Fast X-ray Transients (SFXTs) are a new class of HMXBs discovered thanks to the monitoring of the Galactic plane performed with the INTEGRAL satellite in the last 5 years. These sources display short outbursts (significantly shorter than typical Be/X-ray binaries) with a peak luminosity of a few 1E36 erg/s. The quiescent level, measured only in a few sources, is around 1E32 erg/s. We are performing a monitoring campaign with Swift of four SFXTs (IGRJ16479-4514, XTEJ1739-302, IGRJ17544-2619 and AXJ1841.0-0536/IGRJ18410-0535). We report on the first four months of Swift observations, started on 2007 October 26. We detect a low level X-ray activity in all four SFXTs which demonstrates that these transient sources accrete matter even outside their outbursts. This fainter X-ray activity is composed of many flares with a large flux variability, on timescales of thousands of seconds. The lightcurve variability is also evident on larger timescales of days, weeks and months, with a dynamic range of more than one order of magnitude in all four SFXTs. The X-ray spectra are typically hard, with an average 2-10 keV luminosity during this monitoring of about 1E33-1E34 erg/s. We detected pulsations from the pulsar AXJ1841.0-0536, with a period of 4.7008+/-0.0004 s. This monitoring demonstrates that these transients spend most of the time accreting matter, although at a much lower level (~100-1000 times lower than during the bright outbusts), and that the true quiescence, characterized by a soft spectrum and a luminosity of a few 1E32 erg/s, observed in the past only in a couple of members of this class, is probably a very rare state.



rate research

Read More

Swift is shedding new light on the phenomenon of Supergiant Fast X-ray Transients (SFXTs), a recently discovered class of High-Mass X-ray Binaries, whose optical counterparts are O or B supergiants, and whose X-ray outbursts are about 10000 times brighter than their quiescent state. Thanks to its unique automatic fast-slewing and broad-band energy coverage, Swift is the only observatory which can detect outbursts from SFXTs from the very beginning and observe their evolution panchromatically. Taking advantage of Swifts scheduling flexibility, we have been able to regularly monitor a small sample of SFXTs with 2-3 observations per week (1-2 ks) for two years with the X-Ray Telescope (XRT). Our campaigns cover all phases of their lives, across 4 orders of magnitude in flux. We report on the most recent outburst of AX J1841.0-0536 caught by Swift which we followed in the X-rays for several days, and on our findings on the long-term properties of SFXTs and their duty cycle.
129 - P. Romano 2010
For the first time, Swift is giving us the opportunity to study supergiant fast X-ray transients (SFXTs) throughout all phases of their life: outbursts, intermediate level, and quiescence. We present our intense monitoring of four SFXTs, observed 2-3 times per week since October 2007. We find that, unexpectedly, SFXTs spend most of their time in an intermediate level of accretion ($L_{X}sim 10^{33-34} $ erg s$^{-1}$), characterized by rich flaring activity. We present an overview of our investigation on SFXTs with Swift, the key results of our Project. We highlight the unique contribution Swift is giving to this field, both in terms of outburst observations and through a systematic monitoring.
We present two years of intense Swift monitoring of three SFXTs, IGR J16479-4514, XTE J1739-302, and IGR J17544-2619 (since October 2007). Out-of-outburst intensity-based X-ray (0.3-10keV) spectroscopy yields absorbed power laws with by hard photon indices (G~1-2). Their outburst broad-band (0.3-150 keV) spectra can be fit well with models typically used to describe the X-ray emission from accreting NSs in HMXBs. We assess how long each source spends in each state using a systematic monitoring with a sensitive instrument. These sources spend 3-5% of the total in bright outbursts. The most probable flux is 1-2E-11 erg cm^{-2} s^{-1} (2-10 keV, unabsorbed), corresponding to luminosities in the order of a few 10^{33} to 10^{34} erg s^{-1} (two orders of magnitude lower than the bright outbursts). The duty-cycle of inactivity is 19, 39, 55%, for IGR J16479-4514, XTE J1739-302, and IGR J17544-2619, respectively. We present a complete list of BAT on-board detections further confirming the continued activity of these sources. This demonstrates that true quiescence is a rare state, and that these transients accrete matter throughout their life at different rates. X-ray variability is observed at all timescales and intensities we can probe. Superimposed on the day-to-day variability is intra-day flaring which involves variations up to one order of magnitude that can occur down to timescales as short as ~1ks, and whichcan be explained by the accretion of single clumps composing the donor wind with masses M_cl~0.3-2x10^{19} g. (Abridged)
135 - P. Romano 2009
We describe our monitoring strategy which best exploits the sensitivity and flexibility of Swift to study the long-term behaviour of Supergiant Fast X-ray Transients (SFXTs). We present observations of the recent outbursts from two objects of this class. IGR J16479-4514, underwent an outburst on 2008 March 19, reaching a peak luminosity of about 6E37 erg/s (0.5-100keV; at a distance of 4.9 kpc). We obtained a simultaneous broad-band spectrum (0.3-100 keV), the first for the SFXT class, which is fit with a heavily absorbed (column density 5E22 cm^-2) hard power-law with a high energy cut-off at about 7keV. This spectrum shows properties similar to the ones of accreting pulsars, although no X-ray pulsations were found. IGR J11215-5952, one of the only two periodic SFXT known to date, was observed with Swift several times, first with an intense 23-day long monitoring campaign around the 2007 February 9 outburst; then with a 26-day long monitoring around the unexpected July 24 outburst; finally with a deep exposure during the 2008 June 16 outburst. We present the whole dataset, which also includes observations which allowed us to firmly establish the outburst period at P~165 days. Thanks to our combined observations common characteristics to this class of objects are emerging, i.e., outburst lengths well in excess of hours, often with a multiple peaked structure, dynamic range ~3 orders of magnitude, and periodicities are starting to be found.
176 - P. Romano , G. Cusumano 2009
Swift has allowed the possibility to give Supergiant Fast X-ray Transients (SFXTs), the new class of High Mass X-ray Binaries discovered by INTEGRAL, non serendipitous attention throughout all phases of their life. We present our results based on the first year of intense Swift monitoring of four SFXTs, IGR J16479-4514, XTE J1739-302, IGR J17544-2619 and AX J1841.0-0536. We obtain the first assessment of how long each source spends in each state using a systematic monitoring with a sensitive instrument. The duty-cycle of inactivity is 17, 28, 39, 55% (5% uncertainty), for IGR J16479-4514, AX J1841.0-0536, XTE J1739-302, and IGR J17544-2619, respectively, so that true quiescence is a rare state. This demonstrates that these transients accrete matter throughout their life at different rates. AX J1841.0-0536 is the only source which has not undergone a bright outburst during our campaign. Although individual sources behave somewhat differently, common X-ray characteristics of this class are emerging such as outburst lengths well in excess of hours, with a multiple peaked structure. A high dynamic range (including bright outbursts) of 4 orders of magnitude has been observed. We performed out-of-outburst intensity-based spectroscopy. Spectral fits with an absorbed blackbody always result in blackbody radii of a few hundred meters, consistent with being emitted from a small portion of the neutron star surface, very likely the neutron star polar caps. We also present the UVOT data of these sources. (Abridged)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا