Do you want to publish a course? Click here

MOND and the Universal Rotation Curve: similar phenomenologies

129   0   0.0 ( 0 )
 Added by Gianfranco Gentile
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Modified Newtonian Dynamics (MOND) and the Universal Rotation Curve (URC) are two ways to describe the general properties of rotation curves, with very different approaches concerning dark matter and gravity. Phenomenological similarities between the two approaches are studied by looking for properties predicted in one framework that are also reproducible in the other one. First, we looked for the analogous of the URC within the MOND framework. Modifying in an observationally-based way the baryonic contribution Vbar to the rotation curve predicted by the URC, and applying the MOND formulas to this Vbar, leads to a MOND URC whose properties are remarkably similar to the URC. Second, it is shown that the URC predicts a tight mass discrepancy - acceleration relation, which is a natural outcome of MOND. With the choice of Vbar that minimises the differences between the URC and the MOND URC the relation is almost identical to the observational one. This similarity between the observational properties of MOND and the URC has no implications about the validity of MOND as a theory of gravity, but it shows that it can reproduce in detail the phenomenology of disk galaxies rotation curves, as described by the URC. MOND and the URC, even though they are based on totally different assumptions, are found to have very similar behaviours and to be able to reproduce each others properties fairly well, even with the simple assumptions made on the luminosity dependence of the baryonic contribution to the rotation curve.



rate research

Read More

69 - A. Hees , B. Famaey , G. W. Angus 2015
The Modified Newtonian Dynamics (MOND) paradigm generically predicts that the external gravitational field in which a system is embedded can produce effects on its internal dynamics. In this communication, we first show that this External Field Effect can significantly improve some galactic rotation curves fits by decreasing the predicted velocities of the external part of the rotation curves. In modified gravi
We study geometries of galactic rotation curves from Dark Matter (DM) and Modified Newtonian Dynamics (MOND) models in $(g_{rm bar},g_{rm tot})$-space ($g2$-space) where $g_{rm tot}$ is the total centripetal acceleration of matter in the galaxies and $g_{rm bar}$ is that due to the baryonic (visible) matter assuming Newtonian gravity. The $g2$-space geometries of the models and data from the SPARC database are classified and compared in a rescaled $hat{g}2$-space that reduces systematic uncertainties on galaxy distance, inclination angle and variations in mass to light ratios. We find that MOND modified inertia models, frequently used to fit rotation curve data, are disfavoured at more than 5$sigma$ independent of model details. The Bekenstein-Milgrom formulation of MOND modified gravity compares better with data in the analytic approximation we use. However a quantitative comparison with data is beyond the scope of the paper due to this approximation. NFW DM profiles only agree with a minority of galactic rotation curves. Improved measurements of rotation curves, in particular at radii below the maximum of the total and the baryonic accelerations of the curves are very important in discriminating models aiming to explain the missing mass problem on galactic scales.
70 - Jonas Petersen 2019
In this study the geometry of gas dominated galaxies in the SPARC database is analyzed in a normalized $(g_{bar},g_{obs})$-space ($g2$-space), where $g_{obs}$ is the observed centripetal acceleration and $g_{bar}$ is the centripetal acceleration as obtained from the observed baryonic matter via Newtonian dynamics. The normalization of $g2$-space significantly reduce the effect of both random and systematic uncertainties as well as enable a comparison of the geometries of different galaxies. Analyzing the gas-dominated galaxies (as opposed to other galaxies) further suppress the impact of the mass to light ratios. It is found that the overall geometry of the gas dominated galaxies in SPARC is consistent with a rightward curving geometry in the normalized $g2$-space (characterized by $r_{obs}>r_{bar}$, where $r_{bar}=arg max_r[g_{bar}(r)]$ and $r_{obs}=arg max_r[g_{obs}(r)]$). This is in contrast to the overall geometry of all galaxies in SPARC which best approximates a geometry curing nowhere in normalized $g2$-space (characterized by $r_{obs}=r_{bar}$) with a slight inclination toward a rightward curving geometry. The geometry of the gas dominated galaxies not only indicate the true (independent of mass to light ratios to leading order) geometry of data in $g2$-space (which can be used to infer properties on the solution to the missing mass problem) but also - when compared to the geometry of all galaxies - indicate the underlying radial dependence of the disk mass to light ratio.
We investigate the properties of the baryonic and the dark matter components in low surface brightness (LSB) disc galaxies, with central surface brightness in the B band $mu_0 geq 23 , mag , arcsec^{-2}$. The sample is composed by 72 objects, whose rotation curves show an orderly trend reflecting the idea of a universal rotation curve (URC) similar to that found in the local high surface brightness (HSB) spirals in previous works. This curve relies on the mass modelling of the coadded rotation curves, involving the contribution from an exponential stellar disc and a Burkert cored dark matter halo. We find that the dark matter is dominant especially within the smallest and less luminous LSB galaxies. Dark matter halos have a central surface density $Sigma _0 sim 100 , M_{odot} pc^{-2}$, similar to galaxies of different Hubble types and luminosities. We find various scaling relations among the LSBs structural properties which turn out to be similar but not identical to what has been found in HSB spirals. In addition, the investigation of these objects calls for the introduction of a new luminous parameter, the stellar compactness $C_*$ (analogously to a recent work by Karukes & Salucci), alongside with the optical radius and the optical velocity in order to reproduce the URC. Furthermore, a mysterious entanglement between the properties of the luminous and the dark matter emerges.
Recent observations of the rotation curve of M31 show a rise of the outer part that can not be understood in terms of standard dark matter models or perturbations of the galactic disc by M31s satellites. Here, we propose an explanation of this dynamical feature based on the influence of the magnetic field within the thin disc. We have considered standard mass models for the luminous mass distribution, a NFW model to describe the dark halo, and we have added up the contribution to the rotation curve of a magnetic field in the disc, which is described by an axisymmetric pattern. Our conclusion is that a significant improvement of the fit in the outer part is obtained when magnetic effects are considered. The best-fit solution requires an amplitude of ~4 microG with a weak radial dependence between 10 and 38 kpc.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا