Do you want to publish a course? Click here

Quantum Phase Tomography of a Strongly Driven Qubit

132   0   0.0 ( 0 )
 Added by Leonid Levitov
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interference between repeated Landau-Zener transitions in a qubit swept through an avoided level crossing results in Stueckelberg oscillations in qubit magnetization. The resulting oscillatory patterns are a hallmark of the coherent strongly-driven regime in qubits, quantum dots and other two-level systems. The two-dimensional Fourier transforms of these patterns are found to exhibit a family of one-dimensional curves in Fourier space, in agreement with recent observations in a superconducting qubit. We interpret these images in terms of time evolution of the quantum phase of qubit state and show that they can be used to probe dephasing mechanisms in the qubit.



rate research

Read More

150 - S. Filipp , P. Maurer , P. J. Leek 2008
Quantum state tomography is an important tool in quantum information science for complete characterization of multi-qubit states and their correlations. Here we report a method to perform a joint simultaneous read-out of two superconducting qubits dispersively coupled to the same mode of a microwave transmission line resonator. The non-linear dependence of the resonator transmission on the qubit state dependent cavity frequency allows us to extract the full two-qubit correlations without the need for single shot read-out of individual qubits. We employ standard tomographic techniques to reconstruct the density matrix of two-qubit quantum states.
Superconducting qubits acting as artificial two-level atoms allow for controlled variation of the symmetry properties which govern the selection rules for single and multiphoton excitation. We spectroscopically analyze a superconducting qubit-resonator system in the strong coupling regime under one- and two-photon driving. Our results provide clear experimental evidence for the controlled transition from an operating point governed by dipolar selection rules to a regime where one- and two-photon excitations of the artificial atom coexist. We find that the vacuum coupling between qubit and resonator can be straightforwardly extracted from the two-photon spectra where the detuned two-photon drive does not populate the relevant resonator mode significantly.
We present measurements of single-qubit gate errors for a superconducting qubit. Results from quantum process tomography and randomized benchmarking are compared with gate errors obtained from a double pi pulse experiment. Randomized benchmarking reveals a minimum average gate error of 1.1+/-0.3% and a simple exponential dependence of fidelity on the number of gates. It shows that the limits on gate fidelity are primarily imposed by qubit decoherence, in agreement with theory.
We evaluate the microwave admittance of a one-dimensional chain of fluxonium qubits coupled by shared inductors. Despite its simplicity, this system exhibits a rich phase diagram. A critical applied magnetic flux separates a homogeneous ground state from a phase with a ground state exhibiting inhomogeneous persistent currents. Depending on the parameters of the array, the phase transition may be a conventional continuous one, or of a commensurate-incommensurate nature. Furthermore, quantum fluctuations affect the transition and possibly lead to the presence of gapless floating phases. The signatures of the soft modes accompanying the transitions appear as a characteristic frequency dependence of the dissipative part of admittance.
We experimentally investigate a strongly driven GaAs double quantum dot charge qubit weakly coupled to a superconducting microwave resonator. The Floquet states emerging from strong driving are probed by tracing the qubit - resonator resonance condition. This way we probe the resonance of a qubit that is driven in an adiabatic, a non-adiabatic, or an intermediate rate showing distinct quantum features of multi-photon processes and Landau-Zener-Stuckelberg interference pattern. Our resonant detection scheme enables the investigation of novel features when the drive frequency is comparable to the resonator frequency. Models based on adiabatic approximation, rotating wave approximation, and Floquet theory explain our experimental observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا