Do you want to publish a course? Click here

Quantum state redistribution based on a generalized decoupling

136   0   0.0 ( 0 )
 Added by Ming-Yong Ye
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a simple protocol for a one-shot version of quantum state redistribution, which is the most general two-terminal source coding problem. The protocol is simplified from a combination of protocols for the fully quantum reverse Shannon and fully quantum Slepian-Wolf problems, with its time-reversal symmetry being apparent. When the protocol is applied to the case where the redistributed states have a tensor power structure, more natural resource rates are obtained.



rate research

Read More

Quantum entanglement and coherence are two fundamental resources for quantum information processing. Recent results clearly demonstrate their relevance in quantum technological tasks, including quantum communication and quantum algorithms. In this Letter we study the role of quantum coherence for quantum state redistribution, a fundamental task where two parties aim to relocate a quantum particle by using a limited amount of quantum communication and shared entanglement. We provide general bounds for the resource rates required for this process, and show that these bounds are tight under additional reasonable constraints, including the situation where the receiving party cannot use local coherence. While entanglement cannot be directly converted into local coherence in our setting, we show that entanglement is still useful for local coherence creation if an additional quantum channel is provided, and the optimal protocol for local coherence creation for any given amount of quantum communication and shared entanglement is presented. We also discuss possible extensions of our methods to other scenarios where the receiving party is limited by local constraints, including theories of thermodynamics and asymmetry.
We revisit the task of quantum state redistribution in the one-shot setting, and design a protocol for this task with communication cost in terms of a measure of distance from quantum Markov chains. More precisely, the distance is defined in terms of quantum max-relative entropy and quantum hypothesis testing entropy. Our result is the first to operationally connect quantum state redistribution and quantum Markov chains, and can be interpreted as an operational interpretation for a possible one-shot analogue of quantum conditional mutual information. The communication cost of our protocol is lower than all previously known ones and asymptotically achieves the well-known rate of quantum conditional mutual information. Thus, our work takes a step towards the important open question of near-optimal characterization of the one-shot quantum state redistribution.
In this work, we present the design of a superconducting, microwave quantum state router which can realize all-to-all couplings among four quantum modules. Each module consists of a single transmon, readout mode, and communication mode coupled to the router. The router design centers on a parametrically driven, Josephson-junction based three-wave mixing element which generates photon exchange among the modules communication modes. We first demonstrate SWAP operations among the four communication modes, with an average full-SWAP time of 760 ns and average inter-module gate fidelity of 0.97, limited by our modes coherences. We also demonstrate photon transfer and pairwise entanglement between the modules qubits, and parallel operation of simultaneous SWAP gates across the router. These results can readily be extended to faster and higher fidelity router operations, as well as scaled to support larger networks of quantum modules.
We consider state redistribution of a hybrid information source that has both classical and quantum components. The sender transmits classical and quantum information at the same time to the receiver, in the presence of classical and quantum side information both at the sender and at the decoder. The available resources are shared entanglement, and noiseless classical and quantum communication channels. We derive one-shot direct and converse bounds for these three resources, represented in terms of the smooth conditional entropies of the source state. Various coding theorems for two-party source coding problems are systematically obtained by reduction from our results, including the ones that have not been addressed in previous literatures.
202 - Z. R. Gong , Wang Yao 2013
We show that dissipative quantum state preparation processes can be protected against qubit dephasing by interlacing the state preparation control with dynamical decoupling (DD) control consisting of a sequence of short $pi$-pulses. The inhomogeneous broadening can be suppressed to second order of the pulse interval, and the protection efficiency is nearly independent of the pulse sequence but determined by the average interval between pulses. The DD protection is numerically tested and found to be efficient against inhomogeneous dephasing on two exemplary dissipative state preparation schemes that use collective pumping to realize many-body singlets and linear cluster states respectively. Numerical simulation also shows that the state preparation can be efficiently protected by $pi$-pulses with completely random arrival time. Our results make possible the application of these state preparation schemes in inhomogeneously broadened systems. DD protection of state preparation against dynamical noises is also discussed using the example of Gaussian noise with a semiclasscial description.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا