Do you want to publish a course? Click here

Topological expansion of the chain of matrices

140   0   0.0 ( 0 )
 Added by Bertrand Eynard
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We solve the loop equations to all orders in $1/N^2$, for the Chain of Matrices matrix model (with possibly an external field coupled to the last matrix of the chain). We show that the topological expansion of the free energy, is, like for the 1 and 2-matrix model, given by the symplectic invariants of the associated spectral curve. As a consequence, we find the double scaling limit explicitly, and we discuss modular properties, large $N$ asymptotics. We also briefly discuss the limit of an infinite chain of matrices (matrix quantum mechanics).



rate research

Read More

The goal of this article is to rederive the connection between the Painleve $5$ integrable system and the universal eigenvalues correlation functions of double-scaled hermitian matrix models, through the topological recursion method. More specifically we prove, textbf{to all orders}, that the WKB asymptotic expansions of the $tau$-function as well as of determinantal formulas arising from the Painleve $5$ Lax pair are identical to the large $N$ double scaling asymptotic expansions of the partition function and correlation functions of any hermitian matrix model around a regular point in the bulk. In other words, we rederive the sine-law universal bulk asymptotic of large random matrices and provide an alternative perturbative proof of universality in the bulk with only algebraic methods. Eventually we exhibit the first orders of the series expansion up to $O(N^{-5})$.
The relativistic quantum Toda chain model is studied with the generalized algebraic Bethe Ansatz method. By employing a set of local gauge transformations, proper local vacuum states can be obtained for this model. The exact spectrum and eigenstates of the model are thus constructed simultaneously.
187 - B. Eynard 2019
For a given polynomial $V(x)in mathbb C[x]$, a random matrix eigenvalues measure is a measure $prod_{1leq i<jleq N}(x_i-x_j)^2 prod_{i=1}^N e^{-V(x_i)}dx_i$ on $gamma^N$. Hermitian matrices have real eigenvalues $gamma=mathbb R$, which generalize to $gamma$ a complex Jordan arc, or actually a linear combination of homotopy classes of Jordan arcs, chosen such that integrals are absolutely convergent. Polynomial moments of such measure satisfy a set of linear equations called loop equations. We prove that every solution of loop equations are necessarily polynomial moments of some random matrix measure for some choice of arcs. There is an isomorphism between the homology space of integrable arcs and the set of solutions of loop equations. We also generalize this to a 2-matrix model and to the chain of matrices, and to cases where $V$ is not a polynomial but $V(x)in mathbb C(x)$.
143 - G. Niccoli , H. Pei , V. Terras 2020
We explain how to compute correlation functions at zero temperature within the framework of the quantum version of the Separation of Variables (SoV) in the case of a simple model: the XXX Heisenberg chain of spin 1/2 with twisted (quasi-periodic) boundary conditions. We first detail all steps of our method in the case of anti-periodic boundary conditions. The model can be solved in the SoV framework by introducing inhomogeneity parameters. The action of local operators on the eigenstates are then naturally expressed in terms of multiple sums over these inhomogeneity parameters. We explain how to transform these sums over inhomogeneity parameters into multiple contour integrals. Evaluating these multiple integrals by the residues of the poles outside the integration contours, we rewrite this action as a sum involving the roots of the Baxter polynomial plus a contribution of the poles at infinity. We show that the contribution of the poles at infinity vanishes in the thermodynamic limit, and that we recover in this limit for the zero-temperature correlation functions the multiple integral representation that had been previously obtained through the study of the periodic case by Bethe Ansatz or through the study of the infinite volume model by the q-vertex operator approach. We finally show that the method can easily be generalized to the case of a more general non-diagonal twist: the corresponding weights of the different terms for the correlation functions in finite volume are then modified, but we recover in the thermodynamic limit the same multiple integral representation than in the periodic or anti-periodic case, hence proving the independence of the thermodynamic limit of the correlation functions with respect to the particular form of the boundary twist.
Using the fact that the algebra M := M_N(C) of NxN complex matrices can be considered as a reduced quantum plane, and that it is a module algebra for a finite dimensional Hopf algebra quotient H of U_q(sl(2)) when q is a root of unity, we reduce this algebra M of matrices (assuming N odd) into indecomposable modules for H. We also show how the same finite dimensional quantum group acts on the space of generalized differential forms defined as the reduced Wess Zumino complex associated with the algebra M.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا