Do you want to publish a course? Click here

Attractors in Black

307   0   0.0 ( 0 )
 Added by Alessio Marrani
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We review recent results in the study of attractor horizon geometries (with non-vanishing Bekenstein-Hawking entropy) of dyonic extremal d=4 black holes in supergravity. We focus on N=2, d=4 ungauged supergravity coupled to a number n_{V} of Abelian vector multiplets, outlining the fundamentals of the special Kaehler geometry of the vector multiplets scalar manifold (of complex dimension n_{V}), and studying the 1/2-BPS attractors, as well as the non-BPS (non-supersymmetric) ones with non-vanishing central charge. For symmetric special Kaehler geometries, we present the complete classification of the orbits in the symplectic representation of the classical U-duality group (spanned by the black hole charge configuration supporting the attractors), as well as of the moduli spaces of non-BPS attractors (spanned by the scalars which are not stabilized at the black hole event horizon). Finally, we report on an analogous classification for N>2-extended, d=4 ungauged supergravities, in which also the 1/N-BPS attractors yield a related moduli space.



rate research

Read More

These lectures give an elementary introduction to the subject of four dimensional black holes (BHs) in supergravity and the Attractor Mechanism in the extremal case. Some thermodynamical properties are discussed and some relevant formulae for the critical points of the BH effective potential are given. The case of Maxwell-Einstein-axion-dilaton (super)gravity is discussed in detail. Analogies among BH entropy and multipartite entanglement of qubits in quantum information theory, as well moduli spaces of extremal BH attractors, are also discussed.
These lectures provide a pedagogical, introductory review of the so-called Attractor Mechanism (AM) at work in two different 4-dimensional frameworks: extremal black holes in N=2 supergravity and N=1 flux compactifications. In the first case, AM determines the stabilization of scalars at the black hole event horizon purely in terms of the electric and magnetic charges, whereas in the second context the AM is responsible for the stabilization of the universal axion-dilaton and of the (complex structure) moduli purely in terms of the RR and NSNS fluxes. Two equivalent approaches to AM, namely the so-called ``criticality conditions and ``New Attractor ones, are analyzed in detail in both frameworks, whose analogies and differences are discussed. Also a stringy analysis of both frameworks (relying on Hodge-decomposition techniques) is performed, respectively considering Type IIB compactified on $CY_{3}$ and its orientifolded version, associated with $frac{CY_{3}times T^{2}}{mathbb{Z}_{2}}$. Finally, recent results on the U-duality orbits and moduli spaces of non-BPS extremal black hole attractors in $3leqslant Nleqslant 8$, d=4 supergravities are reported.
We generalize the description of the d=4 Attractor Mechanism based on an effective black hole (BH) potential to the presence of a gauging which does not modify the derivatives of the scalars and does not involve hypermultiplets. The obtained results do not rely necessarily on supersymmetry, and they can be extended to d>4, as well. Thence, we work out the example of the stu model of N=2 supergravity in the presence of Fayet-Iliopoulos terms, for the supergravity analogues of the magnetic and D0-D6 BH charge configurations, and in three different symplectic frames: the SO(1,1)^{2}, SO(2,2) covariant and SO(8)-truncated ones. The attractive nature of the critical points, related to the semi-positive definiteness of the Hessian matrix, is also studied.
We apply the entropy formalism to the study of the near-horizon geometry of extremal black p-brane intersections in D>5 dimensional supergravities. The scalar flow towards the horizon is described in terms an effective potential given by the superposition of the kinetic energies of all the forms under which the brane is charged. At the horizon active scalars get fixed to the minima of the effective potential and the entropy function is given in terms of U-duality invariants built entirely out of the black p-brane charges. The resulting entropy function reproduces the central charges of the dual boundary CFT and gives rise to a Bekenstein-Hawking like area law. The results are illustrated in the case of black holes and black string intersections in D=6, 7, 8 supergravities where the effective potentials, attractor equations, moduli spaces and entropy/central charges are worked out in full detail.
We study Lorentz-violating models of massive gravity which preserve rotations and are invariant under time-dependent shifts of the spatial coordinates. In the linear approximation the Newtonian potential in these models has an extra ``confining term proportional to the distance from the source. We argue that during cosmological expansion the Universe may be driven to an attractor point with larger symmetry which includes particular simultaneous dilatations of time and space coordinates. The confining term in the potential vanishes as one approaches the attractor. In the vicinity of the attractor the extra contribution is present in the Friedmann equation which, in a certain range of parameters, gives rise to the cosmic acceleration.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا