No Arabic abstract
We study the dynamical behavior of a square lattice Ising model with exchange and dipolar interactions by means of Monte Carlo simulations. After a sudden quench to low temperatures we find that the system may undergo a coarsening process where stripe phases with different orientations compete or alternatively it can relax initially to a metastable nematic phase and then decay to the equilibrium stripe phase through nucleation. We measure the distribution of equilibration times for both processes and compute their relative probability of occurrence as a function of temperature and system size. This peculiar relaxation mechanism is due to the strong metastability of the nematic phase, which goes deep in the low temperature stripe phase. We also measure quasi-equilibrium autocorrelations in a wide range of temperatures. They show a distinct decay to a plateau that we identify as due to a finite fraction of frozen spins in the nematic phase. We find indications that the plateau is a finite size effect. Relaxation times as a function of temperature in the metastable region show super-Arrhenius behavior, suggesting a possible glassy behavior of the system at low temperatures.
We study the interplay between the effects of surface anisotropy and dipolar interactions in monodisperse assemblies of nanomagnets with oriented anisotropy. We derive asymptotic formulas for the assembly magnetization taking account of temperature, applied field, core and surface anisotropy, and dipolar inter-particle interactions. We find that the interplay between surface anisotropy and dipolar interactions is well described by the analytical expression of the assembly magnetization derived here: the overall sign of the product of the two parameters governing the surface and the dipolar contributions determines whether intrinsic and collective terms compete or have synergistic effects on the magnetization. This is illustrated by the magnetization curves of $gamma-Fe_{2}O_{3}$ nanoparticles assemblies in the low concentration limit.
We introduce the totally asymmetric exclusion process with Langmuir kinetics (TASEP-LK) on a network as a microscopic model for active motor protein transport on the cytoskeleton, immersed in the diffusive cytoplasm. We discuss how the interplay between active transport along a network and infinite diffusion in a bulk reservoir leads to a heterogeneous matter distribution on various scales. We find three regimes for steady state transport, corresponding to the scale of the network, of individual segments or local to sites. At low exchange rates strong density heterogeneities develop between different segments in the network. In this regime one has to consider the topological complexity of the whole network to describe transport. In contrast, at moderate exchange rates the transport through the network decouples, and the physics is determined by single segments and the local topology. At last, for very high exchange rates the homogeneous Langmuir process dominates the stationary state. We introduce effective rate diagrams for the network to identify these different regimes. Based on this method we develop an intuitive but generic picture of how the stationary state of excluded volume processes on complex networks can be understood in terms of the single-segment phase diagram.
Statistical mechanical models with local interactions in $d>1$ dimension can be regarded as $d=1$ dimensional models with regular long range interactions. In this paper we study the critical properties of Ising models having $V$ sites, each having $z$ randomly chosen neighbors. For $z=2$ the model reduces to the $d=1$ Ising model. For $z= infty$ we get a mean field model. We find that for finite $z > 2$ the system has a second order phase transition characterized by a length scale $L={rm ln}V$ and mean field critical exponents that are independent of $z$.
We study low-temperature nucleation in kinetic Ising models by analytical and simulational methods, confirming the general result for the average metastable lifetime, <tau> = A*exp(beta*Gamma) (beta = 1/kT) [E. Jordao Neves and R.H. Schonmann, Commun. Math. Phys. 137, 209 (1991)]. Contrary to common belief, we find that both A and Gamma depend significantly on the stochastic dynamic. In particular, for a ``soft dynamic, in which the effects of the interactions and the applied field factorize in the transition rates, Gamma does NOT simply equal the energy barrier against nucleation, as it does for the standard Glauber dynamic, which does not have this factorization property.
Spherical truncations of Coulomb interactions in standard models for water permit efficient molecular simulations and can give remarkably accurate results for the structure of the uniform liquid. However truncations are known to produce significant errors in nonuniform systems, particularly for electrostatic properties. Local molecular field (LMF) theory corrects such truncations by use of an effective or restructured electrostatic potential that accounts for effects of the remaining long-ranged interactions through a density-weighted mean field average and satisfies a modified Poissons equation defined with a Gaussian-smoothed charge density. We apply LMF theory to three simple molecular systems that exhibit different aspects of the failure of a naive application of spherical truncations -- water confined between hydrophobic walls, water confined between atomically-corrugated hydrophilic walls, and water confined between hydrophobic walls with an applied electric field. Spherical truncations of 1/r fail spectacularly for the final system in particular, and LMF theory corrects the failings for all three. Further, LMF theory provides a more intuitive way to understand the balance between local hydrogen bonding and longer-ranged electrostatics in molecular simulations involving water.