Do you want to publish a course? Click here

A light pseudoscalar in a model with lepton family symmetry O(2)

260   0   0.0 ( 0 )
 Added by Walter Grimus
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We discuss a realization of the non-abelian group O(2) as a family symmetry for the lepton sector. The reflection contained in O(2) acts as a mu-tau interchange symmetry, enforcing--at tree level--maximal atmospheric neutrino mixing and a vanishing mixing angle theta_13. The small ratio m_mu/m_tau (muon over tau mass) gives rise to a suppression factor in the mass of one of the pseudoscalars of the model. We argue that such a light pseudoscalar does not violate any experimental constraint.



rate research

Read More

Motivated by the neutrino data, an extension of the Standard Model with three Higgs-boson doublets has been proposed. Imposing an O(2) x Z2 family symmetry, a neutrino mixing matrix with theta23 = pi/4 and theta13 = 0 appears in a natural way. Even though these values for the mixing matrix do not follow the recent experimental constraints, they are nevertheless a good approximation. We study the Higgs potential of this model in detail. We apply recent methods which allow for the study of any three-Higgs-boson doublet model. It turns out that for a variety of parameters the potential is stable, has the correct electroweak symmetry breaking, and gives the correct vacuum expectation value.
We propose a model having a gauged $SU(2)$ symmetry associated with the second and third generations of leptons, dubbed $SU(2)_{mutau}$, of which $U(1)_{L_mu-L_tau}$ is an Abelian subgroup. In addition to the Standard Model fields, we introduce two types of scalar fields. One exotic scalar field is an $SU(2)_{mutau}$ doublet and SM singlet that develops a nonzero vacuum expectation value at presumably multi-TeV scale to completely break the $SU(2)_{mutau}$ symmetry, rendering three massive gauge bosons. At the same time, the other exotic scalar field, carrying electroweak as well as $SU(2)_{mutau}$ charges, is induced to have a nonzero vacuum expectation value as well and breaks mass degeneracy between the muon and tau. We examine how the new particles in the model contribute to the muon anomalous magnetic moment in the parameter space compliant with the Michel decays of tau.
We propose a first model of quarks based on the discrete family symmetry Delta (6N^2) in which the Cabibbo angle is correctly determined by a residual Z_2 times Z_2 subgroup, and the smaller quark mixing angles may be qualitatively understood from the model. The present model of quarks may be regarded as a first step towards formulating a complete model of quarks and leptons based on Delta (6N^2), in which the lepton mixing matrix is fully determined by a Klein subgroup. For example, the choice N=28 provides an accurate determination of both the reactor angle and the Cabibbo angle.
The EW-$ u_R$ model was constructed in order to provide a seesaw scenario operating at the Electroweak scale $Lambda_{EW} sim 246$ GeV, keeping the same SM gauge structure. In this model, right-handed neutrinos are non-sterile and have masses of the order of $Lambda_{EW}$. They can be searched for at the LHC along with heavy mirror quarks and leptons, the lightest of which have large decay lengths. The seesaw mechanism requires the existence of a complex scalar which is singlet under the SM gauge group. The imaginary part of this complex scalar denoted by $A^{0}_s$ is proposed to be the sub-MeV dark matter candidate in this manuscript. We find that the sub-MeV scalar can serve as a viable non-thermal feebly interacting massive particle (FIMP)-DM candidate. This $A_s^0$ can be a naturally light sub-MeV DM candidate due to its nature as a pseudo-Nambu-Goldstone (PNG) boson in the model. We show that the well-studied freeze out mechanism falls short in this particular framework producing DM overabundance. We identify that the freeze in mechanism produce the correct order of relic density for the sub-MeV DM candidate satisfying all applicable constraints. We then discuss the DM parameter space allowed by the current bounds from the direct and indirect searches for this sub-MeV DM. This model has a very rich scalar sector, consistent with various experimental constraints, predicts a $sim 125$ GeV scalar with the SM Higgs characteristics satisfying the current LHC Higgs boson data.
We compute the distribution amplitudes of the pion and kaon in the light-front constituent quark model with the symmetric quark-bound state vertex function. In the calculation we explicitly include the flavor-SU(3) symmetry breaking effect in terms of the constituent quark masses of the up (down) and strange quarks. To calculate the kaon parton distribution functions~(PDFs), we use both the conditions in the light-cone wave function, i.e., when $bar{s}$ quark is on-shell, and when $u$ quark is on-shell, and make a comparison between them. The kaon PDFs calculated in the two different conditions clearly show asymmetric behaviour due to the flavor SU(3)-symmetry breaking implemented by the quark masses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا