No Arabic abstract
We propose a three-dimensional electromagnetic current operator within light-front dynamics that satisfies a light-front Ward-Takahashi identity for two-fermion systems. The light-front current operator is obtained by a quasi-potential reduction of the four-dimensional current operator and acts on the light-front valence component of bound or scattering states. A relation between the light-front valence wave function and the four-dimensional Bethe-Salpeter amplitude both for bound or scattering states is also derived, such that the matrix elements of the four-dimensional current operator can be fully recovered from the corresponding light-front ones. The light-front current operator can be perturbatively calculated through a quasi-potential expansion, and the divergence of the proposed current satisfies a Ward-Takahashi identity at any given order of the expansion. In the quasi-potential expansion the instantaneous terms of the fermion propagator are accounted for by the effective interaction and two-body currents. We exemplify our theoretical construction in the Yukawa model in the ladder approximation, investigating in detail the current operator at the lowest nontrivial order of the quasi-potential expansion of the Bethe-Salpeter equation. The explicit realization of the light-front form of the Ward-Takahashi identity is verified. We also show the relevance of instantaneous terms and of the pair contribution to the two-body current and the Ward-Takahashi identity.
We consider a lattice formulation of the four dimensional N=1 Wess-Zumino model that uses the Ginsparg-Wilson relation. This formulation has an exact supersymmetry on the lattice. We show that the corresponding Ward-Takahashi identity is satisfied, both at fixed lattice spacing and in the continuum limit. The calculation is performed in lattice perturbation theory up to order $g^2$ in the coupling constant. We also show that this Ward-Takahashi identity determines the finite part of the scalar and fermion renormalization wave functions which automatically leads to restoration of supersymmetry in the continuum limit. In particular, these wave functions coincide in this limit.
The lattice Wess-Zumino model written in terms of the Ginsparg-Wilson relation is invariant under a generalized supersymmetry transformation which is determined by an iterative procedure in the coupling constant. By studying the associated Ward-Takahashi identity up to order $g^2$ we show that this lattice supersymmetry automatically leads to restoration of continuum supersymmetry without fine tuning. In particular, the scalar and fermion renormalization wave functions coincide.
It is emphasized that for interactions with derivative couplings, the Ward Identity (WI) securing the preservation of a global U(1) symmetry should be modified. Scalar QED is taken as an explicit example. More precisely, it is rigorously shown in scalar QED that the naive WI and the improved Ward Identity (Master Ward Identity, MWI) are related to each other by a finite renormalization of the time-ordered product (T-product) for the derivative fields; and we point out that the MWI has advantages over the naive WI - in particular with regard to the proof of the MWI. We show that the MWI can be fulfilled in all orders of perturbation theory by an appropriate renormalization of the T-product, without conflict with other standard renormalization conditions. Relations with other recent formulations of the MWI are established.
We obtain the light meson mass spectroscopy from the light-front quantum chromodynamics (QCD) Hamiltonian, determined for their constituent quark-antiquark and quark-antiquark-gluon Fock components, together with a three-dimensional confinement. The eigenvectors of the light-front effective Hamiltonian provide a good quality description of the pion electromagnetic form factor, decay constant, and the valence quark distribution functions following QCD scale evolution. We also show that the pions gluon densities can be probed through the pion-nucleus induced $J/psi$ production data. Our pion parton distribution functions provide excellent agreement with $J/psi$ production data from widely different experimental conditions.
We present an analytically solvable 3D light-front Hamiltonian model for hadrons that extends light-front holography by including finite mass quarks and a longitudinal confinement term. We propose that the model is suitable as an improved analytic approximation to QCD at a low resolution scale. We demonstrate that it preserves desired Lorentz symmetries and it produces improved agreement with the experimental mass spectroscopy and other properties of the light mesons. Importantly, the model also respects chiral symmetry and the Gell-Mann-Oakes-Renner relation.