Do you want to publish a course? Click here

Chaotic singular maps

123   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a family of singular maps as an example of a simple model of dynamical systems exhibiting the property of robust chaos on a well defined range of parameters. Critical boundaries separating the region of robust chaos from the region where stable fixed points exist are calculated on the parameter space of the system. It is shown that the transitions to robust chaos in these systems occur either through the routes of type-I or type-III intermittency and the critical boundaries for each type of transition have been determined on the phase diagram of the system. The simplicity of these singular maps and the robustness of their chaotic dynamics make them useful ingredients in the construction of models and in applications that require reliable operation under chaos.



rate research

Read More

Coupled map lattices (CMLs) are prototypical dynamical systems on networks/graphs. They exhibit complex patterns generated via the interplay of diffusive/Laplacian coupling and nonlinear reactions modelled by a single iterated map at each node; the maps are often taken as unimodal, e.g., logistic or tent maps. In this letter, we propose a class of higher-order coupled dynamical systems involving the hypergraph Laplacian, which we call coupled hypergraph maps (CHMs). By combining linearized (in-)stability analysis of synchronized states, hypergraph spectral theory, and numerical methods, we detect robust regions of chaotic cluster synchronization occurring in parameter space upon varying coupling strength and the main bifurcation parameter of the unimodal map. Furthermore, we find key differences between Laplacian and hypergraph Laplacian coupling and detect various other classes of periodic and quasi-periodic patterns. The results show the high complexity of coupled graph maps and indicate that they might be an excellent universal model class to understand the similarities and differences between dynamics on classical graphs and dynamics on hypergraphs.
We investigate the processes of synchronization and phase ordering in a system of globally coupled maps possessing bistable, chaotic local dynamics. The stability boundaries of the synchronized states are determined on the space of parameters of the system. The collective properties of the system are characterized by means of the persistence probability of equivalent spin variables that define two phases, and by a magnetization-like order parameter that measures the phase-ordering behavior. As a consequence of the global interaction, the persistence probability saturates for all values of the coupling parameter, in contrast to the transition observed in the temporal behavior of the persistence in coupled maps on regular lattices. A discontinuous transition from a non-ordered state to a collective phase-ordered state takes place at a critical value of the coupling. On an interval of the coupling parameter, we find three distinct realizations of the phase-ordered state, which can be discerned by the corresponding values of the saturation persistence. Thus, this statistical quantity can provide information about the transient behaviors that lead to the different phase configurations in the system. The appearance of disordered and phase-ordered states in the globally coupled system can be understood by calculating histograms and the time evolution of local map variables associated to the these collective states.
We investigate the parametric evolution of riddled basins related to synchronization of chaos in two coupled piecewise-linear Lorenz maps. Riddling means that the basin of the synchronized attractor is shown to be riddled with holes belonging to another basin in an arbitrarily fine scale, which has serious consequences on the predictability of the final state for such a coupled system. We found that there are wide parameter intervals for which two piecewise-linear Lorenz maps exhibit riddled basins (globally or locally), which indicates that there are riddled basins in coupled Lorenz equations, as previously suggested by numerical experiments. The use of piecewise-linear maps makes it possible to prove rigorously the mathematical requirements for the existence of riddled basins.
We review our recent work on the synchronization of a network of delay-coupled maps, focusing on the interplay of the network topology and the delay times that take into account the finite velocity of propagation of interactions. We assume that the elements of the network are identical ($N$ logistic maps in the regime where the individual maps, without coupling, evolve in a chaotic orbit) and that the coupling strengths are uniform throughout the network. We show that if the delay times are sufficiently heterogeneous, for adequate coupling strength the network synchronizes in a spatially homogeneous steady-state, which is unstable for the individual maps without coupling. This synchronization behavior is referred to as ``suppression of chaos by random delays and is in contrast with the synchronization when all the interaction delay times are homogeneous, because with homogeneous delays the network synchronizes in a state where the elements display in-phase time-periodic or chaotic oscillations. We analyze the influence of the network topology considering four different types of networks: two regular (a ring-type and a ring-type with a central node) and two random (free-scale Barabasi-Albert and small-world Newman-Watts). We find that when the delay times are sufficiently heterogeneous the synchronization behavior is largely independent of the network topology but depends on the networks connectivity, i.e., on the average number of neighbors per node.
165 - G. Ruiz , T. Bountis , C. Tsallis 2011
We study chaotic orbits of conservative low--dimensional maps and present numerical results showing that the probability density functions (pdfs) of the sum of $N$ iterates in the large $N$ limit exhibit very interesting time-evolving statistics. In some cases where the chaotic layers are thin and the (positive) maximal Lyapunov exponent is small, long--lasting quasi--stationary states (QSS) are found, whose pdfs appear to converge to $q$--Gaussians associated with nonextensive statistical mechanics. More generally, however, as $N$ increases, the pdfs describe a sequence of QSS that pass from a $q$--Gaussian to an exponential shape and ultimately tend to a true Gaussian, as orbits diffuse to larger chaotic domains and the phase space dynamics becomes more uniformly ergodic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا