Clifford Algebras, Clifford Groups, and a Generalization of the Quaternions


Abstract in English

One of the main goals of these notes is to explain how rotations in reals^n are induced by the action of a certain group, Spin(n), on reals^n, in a way that generalizes the action of the unit complex numbers, U(1), on reals^2, and the action of the unit quaternions, SU(2), on reals^3 (i.e., the action is defined in terms of multiplication in a larger algebra containing both the group Spin(n) and reals^n). The group Spin(n), called a spinor group, is defined as a certain subgroup of units of an algebra, Cl_n, the Clifford algebra associated with reals^n. Since the spinor groups are certain well chosen subgroups of units of Clifford algebras, it is necessary to investigate Clifford algebras to get a firm understanding of spinor groups. These notes provide a tutorial on Clifford algebra and the groups Spin and Pin, including a study of the structure of the Clifford algebra Cl_{p, q} associated with a nondegenerate symmetric bilinear form of signature (p, q) and culminating in the beautiful 8-periodicity theorem of Elie Cartan and Raoul Bott (with proofs).

Download