Do you want to publish a course? Click here

Quantum Non-locality and Partial Transposition for Continuous-Variable Systems

181   0   0.0 ( 0 )
 Added by Alejo Salles
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A continuous-variable Bell inequality, valid for an arbitrary number of observers measuring observables with an arbitrary number of outcomes, was recently introduced in [Cavalcanti emph{et al.}, Phys. Rev. Lett. {bf 99}, 210405 (2007)]. We prove that any $n$-mode quantum state violating this inequality with quadrature measurements necessarily has a negative partial transposition. Our results thus establish the first link between nonlocality and bound entanglement for continuous-variable systems.



rate research

Read More

The fidelity of a quantum transformation is strongly linked with the prior partial information of the state to be transformed. We illustrate this interesting point by proposing and demonstrating the superior cloning of coherent states with prior partial information. More specifically, we propose two simple transformations that under the Gaussian assumption optimally clone symmetric Gaussian distributions of coherent states as well as coherent states with known phases. Furthermore, we implement for the first time near-optimal state-dependent cloning schemes relying on simple linear optics and feedforward.
With the rise of quantum technologies, it is necessary to have practical and preferably non-destructive methods to measure and read-out from such devices. A current line of research towards this has focussed on the use of ancilla systems which couple to the system under investigation, and through their interaction, enable properties of the primary system to be imprinted onto and inferred from the ancillae. We propose the use of continuous variable qumodes as ancillary probes, and show that the interaction Hamiltonian can be fully characterised and directly sampled from measurements of the qumode alone. We suggest how such probes may also be used to determine thermodynamical properties, including reconstruction of the partition function. We show that the method is robust to realistic experimental imperfections such as finite-sized measurement bins and squeezing, and discuss how such probes are already feasible with current experimental setups.
263 - Roohollah Ghobadi 2021
Kernel methods are ubiquitous in classical machine learning, and recently their formal similarity with quantum mechanics has been established. To grasp the potential advantage of quantum machine learning, it is necessary to understand the distinction between non-classical kernel functions and classical kernels. This paper builds on a recently proposed phase space nonclassicality witness [Bohmann, Agudelo, Phys. Rev. Lett. 124, 133601 (2020)] to derive a witness for the kernels quantumness in continuous-variable systems. We discuss the role of kernels nonclassicality in data distribution in the feature space and the effect of imperfect state preparation. Furthermore, we show that the non-classical kernels lead to the quantum advantage in parameter estimation. Our work highlights the role of the phase space correlation functions in understanding the distinction between classical machine learning from quantum machine learning.
We introduce and discuss a set of tunable two-mode states of continuous-variable systems, as well as an efficient scheme for their experimental generation. This novel class of tunable entangled resources is defined by a general ansatz depending on two experimentally adjustable parameters. It is very ample and flexible as it encompasses Gaussian as well as non-Gaussian states. The latter include, among others, known states such as squeezed number states and de-Gaussified photon-added and photon-subtracted squeezed states, the latter being the most efficient non-Gaussian resources currently available in the laboratory. Moreover, it contains the classes of squeezed Bell states and even more general non-Gaussian resources that can be optimized according to the specific quantum technological task that needs to be realized. The proposed experimental scheme exploits linear optical operations and photon detections performed on a pair of uncorrelated two--mode Gaussian squeezed states. The desired non-Gaussian state is then realized via ancillary squeezing and conditioning. Two independent, freely tunable experimental parameters can be exploited to generate different states and to optimize the performance in implementing a given quantum protocol. As a concrete instance, we analyze in detail the performance of different states considered as resources for the realization of quantum teleportation in realistic conditions. For the fidelity of teleportation of an unknown coherent state, we show that the resources associated to the optimized parameters outperform, in a significant range of experimental values, both Gaussian twin beams and photon-subtracted squeezed states.
117 - Ludovico Lami 2021
In an abstract sense, quantum data hiding is the manifestation of the fact that two classes of quantum measurements can perform very differently in the task of binary quantum state discrimination. We investigate this phenomenon in the context of continuous variable quantum systems. First, we look at the celebrated case of data hiding against the set of local operations and classical communication. While previous studies have placed upper bounds on its maximum efficiency in terms of the local dimension and are thus not applicable to continuous variable systems, we tackle this latter case by establishing more general bounds that rely solely on the local mean photon number of the states employed. Along the way, we perform a quantitative analysis of the error introduced by the non-ideal Braunstein--Kimble quantum teleportation protocol, determining how much two-mode squeezing and local detection efficiency is needed in order to teleport an arbitrary local state of known mean energy with a prescribed accuracy. Finally, following a seminal proposal by Winter, we look at data hiding against the set of Gaussian operations and classical computation, providing the first example of a relatively simple scheme that works with a single mode only. The states employed can be generated from a two-mode squeezed vacuum by local photon counting; the larger the squeezing, the higher the efficiency of the scheme.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا