Do you want to publish a course? Click here

The Vimos VLT Deep Survey: Global properties of 20000 galaxies in the I_AB<=22.5 WIDE survey

299   0   0.0 ( 0 )
 Added by Bianca Garilli
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The VVDS-Wide survey has been designed with the general aim of tracing the large-scale distribution of galaxies at z~1 on comoving scales reaching ~100Mpc/h, while providing a good control of cosmic variance over areas as large as a few square degrees. This is achieved by measuring redshifts with VIMOS at the ESO VLT to a limiting magnitude I_AB=22.5, targeting four independent fields with size up to 4 sq.deg. each. The whole survey covers 8.6 sq.deg., here we present the general properties of the current redshift sample. This includes 32734 spectra in the four regions (19977 galaxies, 304 type I AGNs, and 9913 stars), covering a total area of 6.1 sq.deg, with a sampling rate of 22 to 24%. The redshift success rate is above 90% independently of magnitude. It is the currently largest area coverage among redshift surveys reaching z~1. We give the mean N(z) distribution averaged over 6.1 sq.deg. Comparing galaxy densities from the four fields shows that in a redshift bin Deltaz=0.1 at z~1 one still has factor-of-two variations over areas as large as ~0.25 sq.deg. This level of cosmic variance agrees with that obtained by integrating the galaxy two-point correlation function estimated from the F22 field alone, and is also in fairly good statistical agreement with that predicted by the Millennium mocks. The variance estimated over the survey fields shows explicitly how clustering results from deep surveys of even ~1 sq.deg. size should be interpreted with caution. This paper accompanies the public release of the first 18143 redshifts of the VVDS-Wide survey from the 4 sq.deg. contiguous area of the F22 field at RA=22h, publicly available at http://cencosw.oamp.fr



rate research

Read More

[Abridged] We present a homogeneous and complete catalogue of optical groups identified in the purely flux limited (17.5<=I<=24.0) VIMOS-VLT Deep Survey (VVDS). We use mock catalogues extracted from the MILLENNIUM simulation, to correct for potential systematics that might affect the overall distribution as well as the individual properties of the identified systems. Simulated samples allow us to forecast the number and properties of groups that can be potentially found in a survey with VVDS-like selection functions. We use them to correct for the expected incompleteness and also to asses how well galaxy redshifts trace the line-of-sight velocity dispersion of the underlying mass overdensity. In particular, we train on these mock catalogues the adopted group-finding technique (the Voronoi-Delaunay Method, VDM). The goal is to fine-tune its free parameters, recover in a robust and unbiased way the redshift and velocity dispersion distributions of groups and maximize the level of completeness (C) and purity (P) of the group catalogue. We identify 318 VVDS groups with at least 2 members within 0.2<=z<=1.0, among which 144 (/30) with at least 3 (/5) members. The sample has globally C=60% and P=50%. Nearly 45% of the groups with at least 3 members are still recovered if we run the algorithm with a parameter set which maximizes P (75%). We exploit the group sample to study the redshift evolution of the fraction f_b of blue galaxies (U-B<=1) within 0.2<=z<=1. We find that f_b is significantly lower in groups than in the whole ensemble of galaxies irrespectively of their environment. These quantities increase with redshift, with f_b in groups showing a marginally significant steeper increase. We also confirm that, at any explored redshift, f_b decreases for increasing group richness, and we extend towards fainter luminosities the magnitude range over which this result holds.
We present the type-1 active galactic nuclei (AGN) sample extracted from the VIMOS VLT Deep Survey first observations of 21000 spectra in 1.75 square degree. This sample, which is purely magnitude limited, free of morphological or color selection biases, contains 130 broad line AGN (BLAGN) spectra with redshift up to 5. Our data are divided into a wide (Iab < 22.5) and a deep (Iab < 24) subsample containing 56 and 74 objects respectively. Because of its depth and selection criteria, this sample is uniquely suited to study the population of faint type-1 AGN. Our measured surface density (~ 472 +- 48 BLAGN per square degree with Iab < 24) is significantly higher than that of any other optically selected sample of BLAGN with spectroscopic confirmation. By applying a morphological and color analysis to our AGN sample we find that: (1)~23% of the AGN brighter than Iab=22.5 are classified as extended; this percentage increases to ~42% for those with z < 1.6; (2) a non-negligible fraction of our BLAGN are lying close to the color space area occupied by stars in u*-g versus g-r color-color diagram. This leads us to the conclusion that classical optical ultraviolet preselection technique, if employed at such deep magnitudes (Iab=22.5) in conjuction with a preselection of point-like sources, can miss miss up to ~35% of the AGN population. Finally, we present a composite spectrum of our sample of objects. While the continuum shape is very similar to that of the SDSS composite at short wavelengths, it is much redder than it at lambda > 3000 A. We interpret this as due to significant contamination from emission of the host galaxies, as expected from the faint absolute magnitudes sampled by our survey.
We present photometric redshifts for an uniquely large and deep sample of 522286 objects with i_{AB}<25 in the Canada-France Legacy Survey ``Deep Survey fields, which cover a total effective area of 3.2 deg^2. We use 3241 spectroscopic redshifts with 0<z<5 from the VIMOS VLT Deep Survey as a calibration to derive these photometric redshifts. We devise a robust calibration method which removes systematic trends in the photometric redshifts and significantly reduces the fraction of catastrophic errors. We use our unique spectroscopic sample to present a detailed assessment of the robustness of the photometric redshift sample. For a sample selected at i_{AB}<24, we reach a redshift accuracy of sigma_{Delta z/(1+z)}=0.037 with eta=3.7% of catastrophic error. The reliability of our photometric redshifts is lower for fainter objects: we find sigma_{Delta z/(1+z)}=0.029, 0.043 and eta=1.7%, 5.4% for samples selected at i_{AB}=17.5-22.5 and 22.5-24 respectively. We find that the photometric redshifts of starburst galaxies in our sample are less reliable: although these galaxies represent only 18% of the spectroscopic sample they are responsible for 54% of the catastrophic errors. We find an excellent agreement between the photometric and the VVDS spectroscopic redshift distributions at i_{AB}<24. Finally, we compare the redshift distributions of i selected galaxies on the four CFHTLS deep fields, showing that cosmic variance is already present on fields of 0.8 deg^2.
160 - B. Meneux , L. Guzzo , B. Garilli 2008
We have investigated the dependence of galaxy clustering on their stellar mass at z~1, using the data from the VIMOS-VLT Deep Survey (VVDS). We have measured the projected two-point correlation function of galaxies, wp(rp) for a set of stellar mass selected samples at an effective redshift <z>=0.85. We have control and quantify all effects on galaxy clustering due to the incompleteness of our low mass samples. We find that more massive galaxies are more clustered. When compared to similar results at z~0.1 in the SDSS, we observed no evolution of the projected correlation function for massive galaxies. These objects present a stronger linear bias at z~1 with respect to low mass galaxies. As expected, massive objects at high redshift are found in the highest pics of the dark matter density field.
The VIMOS-VLT Deep Survey (VVDS) currently offers a unique combination of depth, angular size and number of measured galaxies among surveys of the distant Universe: ~ 11,000 spectra over 0.5 deg2 to I_{AB}=24 (VVDS-Deep), 35,000 spectra over ~ 7 deg2 to I_{AB}=22.5 (VVDS-Wide). The current ``First Epoch data from VVDS-Deep already allow investigations of galaxy clustering and its dependence on galaxy properties to be extended to redshifts ~1.2-1.5, in addition to measuring accurately evolution in the properties of galaxies up to z~4. This paper concentrates on the main results obtained so far on galaxy clustering. Overall, L* galaxies at z~ 1.5 show a correlation length r_0=3.6pm 0.7. As a consequence, the linear galaxy bias at fixed luminosity rises over the same range from the value b~1 measured locally, to b=1.5 +/- 0.1. The interplay of galaxy and structure evolution in producing this observation is discussed in some detail. Galaxy clustering is found to depend on galaxy luminosity also at z~ 1, but luminous galaxies at this redshift show a significantly steeper small-scale correlation function than their z=0 counterparts. Finally, red galaxies remain more clustered than blue galaxies out to similar redshifts, with a nearly constant relative bias among the two classes, b_{rel}~1.4, despite the rather dramatic evolution of the color-density relation over the same redshift range.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا