Do you want to publish a course? Click here

$2N$ qubit mirror states for optimal quantum communication

207   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a new genuinely 2N qubit state, known as the mirror state with interesting entanglement properties. The well known Bell and the cluster states form a special case of these mirror states, for N=1 and N=2 respectively. It can be experimentally realized using $SWAP$ and multiply controlled phase shift operations. After establishing the general conditions for a state to be useful for various communicational protocols involving quantum and classical information, it is shown that the present state can optimally implement algorithms for the quantum teleportation of an arbitrary N qubit state and achieve quantum information splitting in all possible ways. With regard to superdense coding, one can send 2N classical bits by sending only N qubits and consuming N ebits of entanglement. Explicit comparison of the mirror state with the rearranged N Bell pairs and the linear cluster states is considered for these quantum protocols. We also show that mirror states are more robust than the rearranged Bell pairs with respect to a certain class of collisional decoherence.

rate research

Read More

We present an efficient method to solve the quantum discord of two-qubit X states exactly. A geometric picture is used to clarify whether and when the general POVM measurement is superior to von Neumann measurement. We show that either the von Neumann measurement or the three-element POVM measurement is optimal, and more interestingly, in the latter case the components of the postmeasurement ensemble are invariant for a class of states.
76 - F. Poggiali , P. Cappellaro , 2017
Quantum systems can be exquisite sensors thanks to their sensitivity to external perturbations. This same characteristic also makes them fragile to external noise. Quantum control can tackle the challenge of protecting quantum sensors from environmental noise, while leaving their strong coupling to the target field to be measured. As the compromise between these two conflicting requirements does not always have an intuitive solution, optimal control based on numerical search could prove very effective. Here we adapt optimal control theory to the quantum sensing scenario, by introducing a cost function that, unlike the usual fidelity of operation, correctly takes into account both the unknown field to be measured and the environmental noise. We experimentally implement this novel control paradigm using a Nitrogen Vacancy center in diamond, finding improved sensitivity to a broad set of time varying fields. The demonstrated robustness and efficiency of the numerical optimization, as well as the sensitivity advantaged it bestows, will prove beneficial to many quantum sensing applications.
We report the experimental realization of squeezed quantum states of light, tailored for new applications in quantum communication and metrology. Squeezed states in a broad Fourier frequency band down to 1 Hz has been observed for the first time. Nonclassical properties of light in such a low frequency band is required for high efficiency quantum information storage in electromagnetically induced transparency (EIT) media. The states observed also cover the frequency band of ultra-high precision laser interferometers for gravitational wave detection and can be used to reach the regime of quantum non-demolition interferometry. And furthermore, they cover the frequencies of motions of heavily macroscopic objects and might therefore support the attempts to observe entanglement in our macroscopic world.
Among various definitions of quantum correlations, quantum discord has attracted considerable attention. To find analytical expression of quantum discord is an intractable task. Exact results are known only for very special states, namely, two-qubit X-shaped states. We present in this paper a geometric viewpoint, from which two-qubit quantum discord can be described clearly. The known results about X state discord are restated in the directly perceivable geometric language. As a consequence, the dynamics of classical correlations and quantum discord for an X state in the presence of decoherence is endowed with geometric interpretation. More importantly, we extend the geometric method to the case of more general states, for which numerical as well as analytica results about quantum discord have not been found yet. Based on the support of numerical computations, some conjectures are proposed to help us establish geometric picture. We find that the geometric picture for these states has intimate relationship with that for X states. Thereby in some cases analytical expressions of classical correlations and quantum discord can be obtained.
104 - Xiaoqian Zhang 2017
After quantum computers come out, governments and rich companies will have the abilities to buy these useful quantum computers, meanwhile they are familiar with these technologies proficiently. If a client wants to perform quantum computing but she does not have quantum computers with relevant quantum technologies. She can seek help from the server and pay his salary, but she does not want to leak anything to the server. Blind quantum computing (BQC) give a good method for the client to realized her quantum computing. In this article, we propose a new BQC protocol of quantum fourier transform (QFT) performed on multi-qubit states with a trusted, a client and a server, where the trusted center can generate resource states, the client can delegate her quantum computing to a server who can perform universal quantum computing without knowing anything about the clients inputs, algorithms and outputs. We first give the BQC protocols of three-qubit QFT with the equivalently quantum circuits, Greenberg-Horne-Zeilinger(GHZ) entangled states and W entangled states as examples. Further, we extend them to multi-qubit QFT on multi-qubit with the equivalently quantum circuits. At last, we give the analyses and proofs of the blindness and correctness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا