Do you want to publish a course? Click here

Improved Cosmological Constraints from New, Old and Combined Supernova Datasets

103   0   0.0 ( 0 )
 Added by Marek Kowalski
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new compilation of Type Ia supernovae (SNe Ia), a new dataset of low-redshift nearby-Hubble-flow SNe and new analysis procedures to work with these heterogeneous compilations. This ``Union compilation of 414 SN Ia, which reduces to 307 SNe after selection cuts, includes the recent large samples of SNe Ia from the Supernova Legacy Survey and ESSENCE Survey, the older datasets, as well as the recently extended dataset of distant supernovae observed with HST. A single, consistent and blind analysis procedure is used for all the various SN Ia subsamples, and a new procedure is implemented that consistently weights the heterogeneous data sets and rejects outliers. We present the latest results from this Union compilation and discuss the cosmological constraints from this new compilation and its combination with other cosmological measurements (CMB and BAO). The constraint we obtain from supernovae on the dark energy density is $Omega_Lambda= 0.713^{+0.027}_{-0.029} (stat)}^{+0.036}_{-0.039} (sys)}$, for a flat, LCDM Universe. Assuming a constant equation of state parameter, $w$, the combined constraints from SNe, BAO and CMB give $w=-0.969^{+0.059}_{-0.063}(stat)^{+0.063}_{-0.066} (sys)$. While our results are consistent with a cosmological constant, we obtain only relatively weak constraints on a $w$ that varies with redshift. In particular, the current SN data do not yet significantly constrain $w$ at $z>1$. With the addition of our new nearby Hubble-flow SNe Ia, these resulting cosmological constraints are currently the tightest available.



rate research

Read More

124 - M. Betoule , R. Kessler , J. Guy 2014
We present cosmological constraints from a joint analysis of type Ia supernova (SN Ia) observations obtained by the SDSS-II and SNLS collaborations. The data set includes several low-redshift samples (z<0.1), all 3 seasons from the SDSS-II (0.05 < z < 0.4), and 3 years from SNLS (0.2 <z < 1) and totals totc spectroscopically confirmed type Ia supernovae with high quality light curves. We have followed the methods and assumptions of the SNLS 3-year data analysis except for the following important improvements: 1) the addition of the full SDSS-II spectroscopically-confirmed SN Ia sample in both the training of the SALT2 light curve model and in the Hubble diagram analysis ( sdssc SNe), 2) inter-calibration of the SNLS and SDSS surveys and reduced systematic uncertainties in the photometric calibration, performed blindly with respect to the cosmology analysis, and 3) a thorough investigation of systematic errors associated with the SALT2 modeling of SN Ia light-curves. We produce recalibrated SN Ia light-curves and associated distances for the SDSS-II and SNLS samples. The large SDSS-II sample provides an effective, independent, low-z anchor for the Hubble diagram and reduces the systematic error from calibration systematics in the low-z SN sample. For a flat LCDM cosmology we find Omega_m=0.295+-0.034 (stat+sys), a value consistent with the most recent CMB measurement from the Planck and WMAP experiments. Our result is 1.8sigma (stat+sys) different than the previously published result of SNLS 3-year data. The change is due primarily to improvements in the SNLS photometric calibration. When combined with CMB constraints, we measure a constant dark-energy equation of state parameter w=-1.018+-0.057 (stat+sys) for a flat universe. Adding BAO distance measurements gives similar constraints: w=-1.027+-0.055.
We combine the CfA3 supernova Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. (2008) to form the Constitution set and, combined with a BAO prior, produces 1+w=0.013 +0.066/-0.068 (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically-useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (R_V=3.1), and MLCS2k2 (R_V=1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < Delta < 1.2. MLCS2k2 with R_V=3.1 overestimates host-galaxy extinction while R_V=1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2 sigma, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.
The noble-alkali comagnetometer, developed in recent years, has been shown to be a very accurate measuring device of anomalous magnetic-like fields. An ultra-light relic axion-like particle can source an anomalous field that permeates space, allowing for its detection by comagnetometers. Here we derive new constraints on relic axion-like particles interaction with neutrons and electrons from old comagnetometer data. We show that the decade-old experimental data place the most stringent terrestrial constraints to date on ultra-light axion-like particles coupled to neutrons. The constraints are comparable to those from stellar cooling, providing a complementary probe. Future planned improvements of comagnetometer measurements through altered geometry, constituent content and data analysis techniques could enhance the sensitivity to axion-like relics coupled to nucleons or electrons by many orders of magnitude.
The luminosity distance measurement of GW170817 derived from GW analysis in Abbott et al. 2017 (here, A17:H0) is highly correlated with the measured inclination of the NS-NS system. To improve the precision of the distance measurement, we attempt to constrain the inclination by modeling the broad-band X-ray-to-radio emission from GW170817, which is dominated by the interaction of the jet with the environment. We update our previous analysis and we consider the radio and X-ray data obtained at $t<40$ days since merger. We find that the afterglow emission from GW170817 is consistent with an off-axis relativistic jet with energy $10^{48},rm{erg}<E_{k}le 3times 10^{50} ,rm{erg}$ propagating into an environment with density $nsim10^{-2}-10^{-4} ,rm{cm^{-3}}$, with preference for wider jets (opening angle $theta_j=15$ deg). For these jets, our modeling indicates an off-axis angle $theta_{rm obs}sim25-50$ deg. We combine our constraints on $theta_{rm obs}$ with the joint distance-inclination constraint from LIGO. Using the same $sim 170$ km/sec peculiar velocity uncertainty assumed in A17:H0 but with an inclination constraint from the afterglow data, we get a value of $H_0=$$74.0 pm frac{11.5}{7.5}$ $mbox{km/s/Mpc}$, which is higher than the value of $H_0=$$70.0 pm frac{12.0}{8.0}$ $mbox{km/s/Mpc}$ found in A17:H0. Further, using a more realistic peculiar velocity uncertainty of 250 km/sec derived from previous work, we find $H_0=$$75.5 pm frac{11.6}{9.6}$ km/s/Mpc for H0 from this system. We note that this is in modestly better agreement with the local distance ladder than the Planck CMB, though a significant such discrimination will require $sim 50$ such events. Future measurements at $t>100$ days of the X-ray and radio emission will lead to tighter constraints.
We present several methods to construct or identify families of free divisors such as those annihilated by many Euler vector fields, including binomial free divisors, or divisors with triangular discriminant matrix. We show how to create families of quasihomogeneous free divisors through the chain rule or by extending them into the tangent bundle. We also discuss whether general divisors can be extended to free ones by adding components and show that adding a normal crossing divisor to a smooth one will not succeed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا