No Arabic abstract
As part of an astrometric program, we have used the Very Long Baseline Array to measure the trigonometric parallax of several young stars in the Taurus and Ophiuchus star-forming regions with great accuracy. Additionally, we have obtained an unprecedented sample of high-resolution (~ 1 mas) images of several young stellar systems. These images revealed that about 70% of the stars in our sample are very tight binary stars (with separations of a few mas). Since it is highly unlikely that 70% of all stars are such tight binaries, we argue that selection effects are at work.
The Joint Milli-Arcsecond Pathfinder Survey (JMAPS) mission is a Department of Navy (DoN) space-based, all-sky astrometric bright star survey. JMAPS is currently funded for flight, with at 2012 launch date. JMAPS will produce an all-sky astrometric, photometric and spectroscopic catalog covering the magnitude range of 1-12, with extended results through 15th magnitude at an accuracy of 1 milliarcsecond (mas) positional accuracy at a mean observing epoch of approximately 2013. Using Hipparcos and Tycho positional data from 1991, proper motions with accuracies of 100 microarcseconds (umas) per year should be achievable for all of the brightest stars, with the result that the catalog will degrade at a much reduced rate over time when compared with the Hipparcos catalog. JMAPS will accomplish this with a relatively modest aperture, very high accuracy astrometric telescope flown in low earth orbit (LEO) aboard a microsat. Mission baseline is for a three-year mission life (2012-2015) in a 900 km sun synchronous terminator orbit.
We started a follow-up investigation of the Deep X-ray Radio Blazar Survey objects with declination >-10 deg. We undertook a survey with the EVN at 5GHz to make the first images of a complete sample of weak blazars, aiming at a comparison between high- and low-power samples of blazars. All of the 87 sources observed were detected. Point-like sources are found in 39 cases, and 48 show core-jet structure. According to the spectral indices previously obtained, 58 sources show a flat spectral index, and 29 sources show a steep spectrum or a spectrum peaking at a frequency around 1-2 GHz. Adding to the DXRBS objects we observed those already observed with ATCA in the southern sky, we found that 14 blazars and a SSRQ, are associated to gamma-ray emitters. We found that 56 sources can be considered blazars. We also detected 2 flat spectrum NLRGs. About 50% of the blazars associated to a gamma-ray object are BL Lacs, confirming that they are more likely detected among blazars gamma-emitters. We confirm the correlation found between the source core flux density and the gamma-ray photon fluxes down to fainter flux densities. We also found that weak blazars are also weaker gamma-ray emitters compared to bright blazars. Twenty-two sources are SSRQs or CSSs, and 7 are GPSs. The available X-ray ROSAT observations allow us to suggest that CSS and GPS quasars are not obscured by large column of cold gas surrounding the nuclei. We did not find any significant difference in X-ray luminosity between CSS and GPS quasars.
Aims.Analysis of the innermost regions of the carbon-rich star IRC+10216 and of the outer layers of its circumstellar envelope have been performed in order to constrain its mass-loss history. Methods: .We analyzed the high dynamic range of near-infrared adaptive optics and the deep V-band images of the circumstellar envelope of IRC+10216 using high angular resolution, collected with the VLT/NACO and FORS1 instruments. Results: .From the near-infrared observations, we present maps of the sub-arcsecond structures, or clumps, in the innermost regions. The morphology of these clumps is found to strongly vary from J- to L-band. Their relative motion appears to be more complex than proposed in earlier works: they can be weakly accelerated, have a constant velocity, or even be motionless with respect to one another. From V-band imaging, we present a high spatial resolution map of the shell distribution in the outer layers of IRC+10216. Shells are resolved well up to a distance of about 90 to the core of the nebula and most of them appear to be composed of thinner elongated shells. Finally, by combining the NACO and FORS1 images, a global view is present to show both the extended layers and the bipolar core of the nebula together with the real size of the inner clumps. Conclusions: .This study confirms the rather complex nature of the IRC+10216 circumstellar environment. In particular, the coexistence at different spatial scales of structures with very different morphologies (clumps, bipolarity, and almost spherical external layers) is very puzzling. This confirms that the formation of AGB winds is far more complex than usually assumed in current models.
Nowadays, compact sources like surfaces of nearby stars, circumstellar environments of stars from early stages to the most evolved ones and surroundings of active galactic nuclei can be investigated at milli-arcsecond scales only with the VLT in its interferometric mode. We propose a spectro-imager, named VSI (VLTI spectro-imager), which is capable to probe these sources both over spatial and spectral scales in the near-infrared domain. This instrument will provide information complementary to what is obtained at the same time with ALMA at different wavelengths and the extreme large telescopes.
Dark sector particles with small electric charge, or millicharge, (mCPs) may lead to a variety of diverse phenomena in particle physics, astrophysics and cosmology. Assuming their possible existence, we investigate the accumulation and propagation of mCPs in matter, specifically inside the Earth. Even small values of millicharge lead to sizeable scattering cross sections on atoms, resulting in complete thermalization, and as a consequence, considerable build-up of number densities of mCPs, especially for the values of masses of GeV and higher when the evaporation becomes inhibited. Enhancement of mCP densities compared to their galactic abundance, that can be as big as $10^{14}$, leads to the possibility of new experimental probes for this model. The annihilation of pairs of mCPs will result in new signatures for the large volume detectors (such as Super-Kamiokande). Formation of bound states of negatively charged mCPs with nuclei can be observed by direct dark matter detection experiments. A unique probe of mCP can be developed using underground electrostatic accelerators that can directly accelerate mCPs above the experimental thresholds of direct dark matter detection experiments.